Hydraulic Properties of the Floridan Aquifer Systen1 and Equivalent Clastic Units in Coastal Georgia and Adjacent Parts of South Carolina and ~..,lorida
by
s. c. John Clarke~ Oavkl Leeth~ DaVette TaylorNHarris,
Jaime A.. Pah1ter! and James L Labowski
U.S. Geological Survey
GEORGIA DEPARTMENT O.F NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION GEORGIA GEOLOGIC SURVEY
Prepared in cooperation with the
lJ.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY
DOCUl'ASNTS
INFORMATION CIRCULAR 109 UGi\ LlbRARlES
Cover photograph: Ship in Savannah Harbor, Georgia. 2001 Photograph by: Edward H. Martin, U.S. Geological Survey
HYDRAULIC PROPERTIES OF THE FlORIDAN AQUIFER SYSTEM AND EQUIVALENT ClASTIC UNITS
IN COASTAl GEORGIA AND ADJACENT PARTS OF SOUTH CAROLINA AND FLORIDA.
by JohnS, ctarke,. David C Leeth, DaVeHe Taylor-HmTis, hirne A, Painter, and Jan1% L, Labowski U5. GEOLOGICAL SURVEY
GEORGIA DEPARTivlENT OF NAfURAL RESOURCES Lonicc C', Barrett, Commissiont'1'
EN\l!RONMENTAL PROTECT10N DJVISlON Carol Couch, Director
GEORGIA GEOLOGIC SURVEY WjUiam R McLemore, State Geoiogist
Prepan~d in cooperation witb the LLS, GEOLOGICAL SURVE"'l
Athmta, Georgia 2004
INf.~ORM.4TION CIRClTLAR 109
ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ........ . . . . ... . l lNTRfJt)lfC'r{C>N ~ .... ~ ~ . , ............ , .. , . , ........ , ......................... l
J>urpo9it~ llnd Scop~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Des..:ription of Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 We!HdentificHtion Sy<;tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................. 2 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................ 2 Admowiedgment<; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 4 HYRDOGFOLOGY ...................................................... 4 G<?.o!Dgic Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ 4 Floridan Aquifer Sy>te;m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 HYDRGLOGfC-PROPERTY DATA . . . . . . . . . . . . . . . . . . . . . . . . . . ................. 7 Transmissivity and Storage Coefn(:ient . . . . . . . . . . . . . . . . . . . . .................. 7 'lerti<:al Hydraulic Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... 8 Aquikr-Te:>tData Qualifiers............. . . . . . . . . . . . . . . . . . ................ S HYDRAULIC PROPERTIES OF THE :FlORlD..,\N AQUIFER SYSTE"f-.1 ............... 9 tipper Floridan Aquifer and Equivalent Cla::>tic Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Lower Floridan Aquifer and Equivalent Clastic Un:its ............................ W Vertk.al Hydraulic Conductivity . . . ........................................ ! B. s u~"n"L\l{Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SELECTED REFERENCES ................................................... 23 ..,.\PPHJDIX A ....... ' .. ' .... ' . . . . . . . . . . . ...... ' .. ' ' ' .. ' . . . . . . . . . . . . . . . . . 27
L M'ap showing location of t<tudy area, ph)'l'iographic and structural features, and Hne ofhydwgeolDgic t<ectkm in coaswl Georgia and a~iB.<:em part'-; d: S!)llth C.lmlina and. Florida ......................................... 3
2. Chart showing geologic. and hydrogeologic unit<; ~1f the upper and. !ower Coastal
Plain, ;;oa1ta1 Georgia, and adjacent parts of South Carolhm and Florida ..... 5 3. D1agmrn ::<.1mwing hydrogeoiogk section of lhe Flmi.dB. aquifer syste:m
along dip, upper to lowe:r C!)a:->tal Plain, ~oastal GeOt>i;ia . . . . . . . . . . . . . . . . . . 6 4. Box:plot showing tmnsmissivity ofthe Upper and Lower Fbrid<tn aquifer~
in fhe ~mdy area in coa.<;tal Georgia and adja<:ent parts of Snuth Carolina snd florida, and at multi>lqui:f...)r wdls wmpleted in the 'Upper and Lo'.ver Floridlill aquifers, Duval Cmmty, Florid>l . . . . . . . . . . . . . . . . . . . . . . 10 Figure<; 5...9: Maps 9ihowing: 5a. Tran.8mbsivity of the Upper Floridan aquifer and equivalent da9iti~ units in coagtal Georgia and at1janml parts !)f So=ttth Carolina and Florida . . . . . . . . . . 14 5b. Tnmsn:ni<sivity of the Opper Floridan aq\!tter in Chatham and Glynn Cnum:ies, Georgia, and Beaufnn and Jasper C~1unties, South Carolina , . . . . . . . . . . . . . 1:' 6a. StMage coeft1dent of the Upper :Florida.u aquifer and equivalent clastic units in n)asl:ai Georgia and adjacent pans of South Carolina a.'1d Florida . . . . . ~ . . 16 6b. Storage coetlk.ient ofthe Upper Flori.daJ! ll.(}Uif~r in Chathmn C('Jmty, Georgia, an.d Beaubn and Jasper Counties, South Carolina . . . . . . . . . . . . . . 17 6c. Storage ;;oefficieut oftk Upper Floridan aquifer in Glynn County, Georgia .. , !8
Figure
7. Transmissivity of the Lower Floridan aquifer and equivalent clastic units in (A) coastal Georgia and adjacent parts of South Carolina and Florida; (B) Barnwell and Allendale Counties, South Carolina; and (C) multi-aquifer wells completed in the Upper and Lower Floridan aquifers in Duval County, Florida. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8. Storage coefficient of t.~e Lower Floridan aquifer and equivalent clastic units in Allendale and Barnwell Counties, South Carolina, and at multi-aquifer wells completed in the Upper and Lower Floridan aquifers i."1 Duval County, Florida .................................. 20
9. Location of sites with vertical hydraulic-conductivity data for the Floridan aquifer system, Burke, Chatham, and Glynn Counties, Georgia, and Barnwell and Beaufort Counties, South Carolina . . . . . . . . . . . . . . . . . . . 21
10. Distribution of vertical hydrauiic conductivity for selected hydrogeologic units of Floridan aquifer system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table L Vertical hydraulic conductivity of the Floridan aquifer system, coastal Georgia and adjacent parts of Souln Carolina and Florida . . . . . . . . . 11
A-1. Transmissivity and storage coefficient of the Upper and Lower Floridan aquifers and equivalent clastic units, coastal Georgia and adjacent parts of South Carolina and Fiorida . . . . . . . . . . . . . . . . . . . . . . . . . 27
Vertical Datum
Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88). Historical data collected and stored as National Geo-
Idetic Vertical Datum of 1929 (NGVD 29) have been converted to North American Vertical Datum of 1988 (NAVD 88) for this publication.
Horizontal Datum
Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83). Historical data collected and stored as North American Datum of 1927 (NAD 27) have been converted to NAD 83 for use in this publication.
Hydraulic Properties of tbe Floridan Aquifer System and Equivalent Clastic Units in Co~stal Georgi.a and Adjacent Parts of South Carohna and Flortda
bV Johns. Clarke, David C. Leuth, DaVette Tay!orHarris, Jaime A. Painter, and James L Labowski
JJydmulh.>pF~'JX:l"ty d.a!a l~"'~' the Floridan aqMife:r ~ys!.em and equivalen; d.astk. ~e<hments i!1 a 67-county area of coa.~. tal
Georgia a:nd a,;J_i>3.<:ent part-;; of South Carolina and Fhxida were
evaluated to provide. data necessary fot development of ground\ater fbw and solutetran:;;p;xt models. Dat1 include transmis--
:>iv:i!v at 324 wdls, swrage cc.efficient at 115 wells, and vertical
hvd;w.Jli;; ctmdllctivity of T2 core samples from 27 sites.
Hydraulic pmpert:ie:> of the Vpper Floridan aquifer vary
greativ i11 the study area due ;.<' the he-terogeneity (and hx:al1y to ;nis~1t~opy! of the aquifer and to variation,~ in the degree of (;m~~ Hm;rm:mt provided by (:>::mfining tmit:s. Pmnri11Cnt s-trndural feu~ nm% in the areu,-----the Southeast Georgia Embayment, >he Beau-
fort ;\rch. and the Gulflrough-----i:nHuence the thickness :md hydraulic prOfX:!iies of the sooimentf< i.Xm:lprbing the Floridan aquif~r system. Tnnlsmiss1vity of the tipper Floridan aqu1:fi-~r
and equivalent updip units was C<!mpikd for 1J9 wdh and range~ from 530 feet squured per day (ftt/d) ai Ikauf0rt Coanty,
South C.;rroHrm, w 600,000 fi11<1 in Coffee County, Deorgia, h>
<:arhonate rock settings of the lower Coastal Plain, !:mnsmi~siv ity of th.<-: Opper Floridan aquifer generally is g!eater man 20,000 fi2!<L, with value::< exceeding l 00,000 fr!d in the oouthea:>tern and sm1thwesrem pans of the Stl.ldy area (generally coi11~ ~!ding ',vith the area of gl'eatest aquifer thickness}. Transmissiv-
itY nf the Opper F1ori.da1l aquifer generaHy is less Hum
1i),{){}O ttl!d in and near the upper Coastal Plain, where the aquifer h thin md ~onsb1.s b:rgdy of clastic :;;ed!ments, and in the
vi(:inity ofttw Gulf Trough, where th~ aquiier <.;ons!sls of low permeability rocks and.wd.hnentt:;, Large variabihty in the range ohrausmis:>ivi.ty in Camden and Glynn Countk~, Georgia, and Nas~au (\")Unty, Florida, demon:>trates the an:isotmpic distribu-
tion ofhyd.rauhc properties that may ref<u.1t fu:nn tracmres <!r f;duti:on openings in th<-: catbonate !\.x.b. Swrag~ .:oefficien.t of
!l,e Upper Floridan aquife1 waf; compiled t<..'l' ! 06 weHs an.d
ranges from about 0,()0004 at Beaufort County, South Carolina,
to 0.04 in Baker County, Honda.
Transmissivi.ty ofme L;>wer F%nridan aquifer and equivalent
updip dastic ~mils wa.<> compiled for 53 wells an~ range:> fmm about 170 ft2id in Harnvidl County, South Carolina, to about
n 43,{}00 1:d in Camden County, Georgia. T:ran:-.mit<t<ivit'y' of the
Lower r:loridan aquihlr is greatest where the aqmfer is thick-
est-----in ~t>lltheasn:::rn Ge-:xgi.a :md northeastern Florida-----where
0stimm.:::s are gre-ater than 10.0()(} ft:!!d.: at nne wdl in snu!.hem>t
fl2 ern Georgia tran&1nissivitv wa:> <-:stimat-~d to !x. ;1--;; high as
1\){),000 /;,i, Storaue-c:>~ffi<:ient data fi>:r the l.A."'Wer Floridan
t;,; aquifer are limited three estimates in Ha:nl'Ndl and AHendak
Counties. Sou!h Carolina, and to estimates det-~rm!ned from six
mult1-B.quier tests in IJuval Cotmty, Florida, In the South Cam-
.oorn linu tests. storage coeftkiem :ranges :trom 0
to 0Jl004: !his
runge is indk:ative ofa confined aquifer. The storage cDeffidcnt
for the combined Upper and Lower Floridan weHs in Duval
County, Florida, ranges from 0.\}0002 !o (}X)1.
\/erticaJ hydraulic wnductivity was compiled frorn cre
~ampks wlie<:ted a! 27 sit~, For the tipper Flond;m confining
unlt, vn.1ues from 39 <.~ore &les at 17 siks range from 0.0002
to 3 feet per <hy {fi/d). For the txvw-~r Floridan mnGning unit
value~ from 10 core ~ampks at 9 she~ range from abm1!
(),()00004 w !). 16 ft/d. Ye:rticai hyd:muhc cowhl~tivity of the
Upper Floridan .aquifer wa;:; compikd frum l6 core ,;=;ampks at
five sttes, mos!ly in the Brtll!swick, Georgia. ar<-.)a and values
range from OJ10134 to 160.4 ft!d. Verti<.~al hydraulic o>ndud:iv-
ity fbr the ~emiconflning t:nit separating the upper a1~d l(lWer
watcr~hearhlg zones nfthe Upper FlGridan at Brtmswick, i.:ko:r
gia, xnnpHed fmm 6 core ~arnpks at tht~ s1Ws ranges from
0/100008 to 0.000134 ft!d, The vert1,~al hydraulic cond',!ctivity
of the Lower Floridan aquifer in a core sample fro:m a weH at
Brunswick, Georgia, is 5.3 ft!d; ll!i,s value is comparahk to val-
ues for the Upper Florid>l.u aquifer.
Saltwater contamination b :restricting lit<~ a,-ailabihty of fresh ground-water supplies in coastal Georgia and adjacem patts of South Caro!inB. and Florida. The principlll source of
i!e:shwate:r in the coasm.! ar<:a is the Upper f'l,:>ridan aquifer, an
extremely permeable, high--yidding aquifer that was firs; developed in the late 1800s, and has been used ext~nsoh~~ly in the area sinc.e. Pm:npi.ug the llquifer has resulted b substantial waterkvc1 decline and stlbwqu~.mt encroach...<uen! of se;rwater into the aquif~r at the northern end ofHiltnn Head island, S.C.: and in
2 Hydraulic Property of the Floridan Aquifer System
saltwater intrusion of the aquifer from underlying brine-filled strata at Brunswick, Ga., and near Jacksonville, Fla.
The Coastal Sound Science Initiative is a series of scientific and feasibility studies to support development of the State of Georgia's final strategy to protect the Upper Floridan aquifer from saltwater contamination (Georgia Environtnental Protection Division, 1997). As part ofthe Coastal Sound Science Initiative, the U.S. Geological Survey (USGS)-in cooperation with the Georgia Environmental Protection Division (GaEPD}--is developing numerical models to simulate ground-water flow and solute transport (saltwater contamination). To support this effort, detailed information regarding the hydraulic properties of the Floridan aquifer system were compiled; these data include transmissivity, storage coefficient, and vertical hydraulic conductivity.
Purpose and Scope
This report presents a compilation of existing hydraulicproperty data for the Floridan aquifer system and equivalent aquifer units of coastal Georgia, southeastern South Carolina, and northeastern Florida. Data include analysis of transmissivity at 324 well.s, storage coefficient at 115 wells, and vertical hydraulic conductivity of72 core samples from 27 sites. Data were compiled largely from the literature and from data flles of the USGS, GaEPD, South Carolina Department of Health and Environmental Control (SCDHEC), South Carolina Depart~ ment of Natural Resources, and the St. Johns River Water Management District. Interpretations relating hydraulic-property values to hydrogeologic settings were made on the basis of available published hydrogeologic data.
Description of Study Area
The GaEPD defmes the coastal area of Georgia (fig. 1) to include the 6 coastal Georgia counties and 18 adjacent inland counties; a 24-county area of 12,240 square miles (mi2). To facilitate the development of ground-water models for the coastal area, the study area was expanded to include natural hydraulic boundaries that lie outside the 24-county area-an additional44 counties. The 68-county area encompasses an area of 32,660 mi2 and includes 56 counties in southern Georgia, 7 counties in southeastern South Carolina, and 5 counties in northeastern Florida.
The study area is located in the Coastal Plain physiographic province {Clark andZisa, 1976). For discussions in this report, the Coastal Plain has been divided into the upper Coastal Plain, comprised of the Fall Line Hills District of Clark and Zisa (1976); and the lower Coastal Plain, comprised of the Vidalia Uplands, Bacon Terraces, and Banier Island Sequence Districts ofClark and Zisa ( 1976). Topographic reliefranges from low in the lower Coastal Plain to steep in the northern Coastal Plain. Land-surface altitudes are as high as 100 feet (ft) in the lower Coastal Plain and 300 ft in the upper Coastal Plain. Land use is largely urban in industrial areas and cities such as Savannah and
Brunswick; outside of these areas, land use is a mix of forest, grazed woodland, cropland with pasture, marsh, and swampland.
Well-Identification Systems
Wells in Georgia are identified according to a system based on the USGS index to topographic maps of Georgia. Each 7Y:z-minute topographic quadrangle in the State has been given a number and a letter designation beginning at the southwest comer of the State. Numbers increase eastward and letters increase alphabetically northward. Quadrangles in the northern part ofthe State are designated by double letters. The letters "I," "0," "II," and "00" are not used. Wells inventoried in each quadrangle are numbered sequentially, beginning with l. Thus, the fourth well inventoried in the 34H quadrangle in Glynn County is designated 34H004.
The SCDHEC assigns identifiers to wells on the basis of their location as determined by use ofa latitude-longitude grid system. The entire State is divided into a grid matrix of 5 minutes of latitude and 5 minutes of longitude, forming 5- by 5-minute cells. Each cell has a corresponding number and uppercase letter(s), for example, 36Y. The 5-minute cells are further divided into a grid of twenty-five !-minute latitude by 1-minute longitude cells, each having a lowercase letter that starts with "a" and continues through "y"; for example, 36Y-e. Wells located within a 1-minute ceH are numbered consecutively; for example, the first well inventoried in 36Y-e would be assigned the number 36Y-el.
ln addition to a SCDHEC identifier, each well in South Carolina is assigned a county designation by the South Carolina Department ofNatural Resources; this consists of a three-letter abbreviation for the county name and a sequentialiy assigned number. For example, BAM-62 represents the sixty-second well that was inventoried in Bamburg County. In Florida, there is no uniform system employed to number wells; local well names or well numbers are used for identification.
Previous Studies
This report updates aquifer hydraulics data presented in reports for the Floridan aquifer system by Bush and Johnston (1988) as part of the USGS Regional Aquifer System Analysis (RASA) program. Bush and Johnston ( 1988) mapped the distribution of transmissivity of the Upper Floridan aquifer and produced a comparative evaluation of the reliability of these data (their plate 2) and a tabular compilation of aquifer-test data (their table 2). Krause and Randolph (1989) mapped horizontal hydraulic conductivity and transmissivity for the Upper Floridan aquifer and extrapolated these data into zones of similar hydraulic conductivity (their plate 7); they also presented a transmissivity distribution for the Upper Floridan aquifer based
on simulation (their plate 8). Clarke and Krause {2000) described
updates to previously calibrated ground-water flow models in coastal Georgia, including maps showing simulated transmissivity and leakance for the Upper and Lower Floridan aquifers.
.. ....... ..._.~
_____ .
8~a rrs.ox.&t.:OO n-...:-~-: t:.S. G:::uKJgi:>: S,...;n.-y 1:/.>;J!!,OO\!-::<c&:% <1<!l~:ol l~!!< g:apt,s. &mG!~m: lealw~s ;,l()tj:lil:!>::: tmm f<WS!,0. <.:;s;ta:
f>&<S>>&f<:Y,. Lal:<>)tel<'<'Y w-:.m: '>t,>e=s ;snd
Ed->Us. 200i; ;lt!d K!)!iam ;m;:; (;l@a>f. 1%<>.
Nt1f$~$S!'!'~ 8mi:. !9. F:!.l!'itWn &Vliita$ ~~~:-:-: 1t).:*1l Kfaw.;~ a~<Hlanil)" (HlsSi.
15
EXPLANA.T!ON
Approximate northern extent of the Southfllast Georgia Embayment
Approximate focatioo of the
satmaune
A - A' Une of hydrogeolog~ $1!!etion-
Sh~:Jwn in figUf{! 3
Agurn 1, Locator. nf study area in coastal Gemgia and adjacant parts of South Carolina anrl Horirla, physiographic ano structural
featun~s, entlliM cf hydrogeologic sectinrt
4 Hydraulic Property of the Floridan Aquifer System
Brooks and others (1985) and Faye and McFadden (1986} presented data on hydraulic characteristics of clastic aquifer units that are updip equivalents to the Floridan aquifer system. Faye and Mayer ( 1996) presented maps showing model-calibrated hydraulic characteristics of equivalent clastic units. Clarke and West ( 1998) simulated ground-water flow in and around the Savannah River Site i11 South Carolina and Georgia; their model was based, in part, on aquifer tests performed and analyzed by personnel with Clemson University (Moore and others, 1993; Snipes and others, 1995a, b), and on transmissivity estimates derived from specific-capacity tests of wells and from borehole resistivity logs.
Szell ( 1993) provided a compilation of transmissivity and storage-coefficient data from analyses of aquifer tests in northeastern Florida. Aucott and Newcome (1986) and Newcome (1993, updated 2000) presented transmissivity and storage coefficients derived from aquifer-test analyses in the South Carolina Coastal Plain. Jones and Maslia (1994) compiled data from four large-scale aquifer tests conducted in the Brunswick area in Glynn County, Ga., and reanalyzed data from one test conducted during 1962-63 at the Hercules, Inc., wellfield at Brunswick.
Acknowledgments
Because this study relied heavily on the works by previous investigators, the authors of previous USGS reports containing large-scale compilations of aquifer properties were consulted regarding their interpretations. Peter W. Bush (U.S. Geological Survey), and Richard E. Krause and Richard H. Johnston {both U.S. Geological Survey retired) discussed their work and provided helpful suggestions on the approach for this study. Roy Newcome (U.S. Geological Survey retired and currently (2004] with the South Carolina Department ofNatural Resources) provided supplemental information from his published work that greatly enhanced the data coverage for the South Carolina part of the study area. Harold E. Gill and Robert E. Faye (both U.S. Geological Survey retired) provided a reinterpretation and reevaluation of the Waycross, Wayne County, Ga., aquifer test originally reported by Matthews and Krause (1984). Richard M. Spechler and Trudy G. Phelps (U.S. Geological Survey, Alta~ monte Springs, Fla.) and Paula F. Presley {St. Johns River Water Management District) provided data for northeastern Florida, including unpublished data from current investigations.
Geologic Setting
Geologic strata within the Coastal Plain physiographic province consist of unconsolidated to consolidated layers of sand and clay a.1d semiconsolidated to very dense layers of limestone atld dolomite (Clarke and others, 1990). These sediments range in age from Late Cretaceous to Holocene (fig. 2), and unconformably overlie Paleozoic to Mesozoic igneous, metamorphic, and sedimentary rocks. These sedimentary units generally strike northeast, and dip and thicken to the southeast; maximum thickness is about 5,500 ft in Camden County, Ga. (Wait and Davis, 1986). Prominent structural features in the area (fig. l ), such as the Southeast Georgia Embayment, the Beaufort Arch, and the Gulf Trough, influence the thickness of sediments.
The Southeast Georgia Embayment is a shallow east-tonortheast-plunging syncline that subsided at a moderate rate from the Late Cretaceous until the late Cenozoic (Miller, 1986). The thickness ofCoastal Plain deposits is greatest in the vicinity of the Southeast Georgia Embayment (fig. 3}.
The Beaufort Arch is centered near Hilton Head Island and trends parallel to the coast (fig. 1). The Beaufort Arch interrupts the regional southward dip of the sediments in that area. Within the area influenced by the Beaufort Arch, Coastal Plain deposits thin and are present at shallower depths than in the vicinity of the Southeast Georgia Embayment.
The Gulf Trough (figs. 1 and 3) is a zone of relatively thick accumulations of fine-grained clastic sediments and argillaceous carbonates, in which permeability and thickness of Coastal Plain deposits decrease. In this area, ground-water flow is partially impeded by the juxtaposition of rocks ofhigher permeability updip and downdip ofthe trough, with those of lower permeability within the trough (Krause and Randolph, 1989).
In addition to the aforementioned geologic features, the "Satilla Line" (fig. I) is a postulated hydrologic boundary identified by GaEPD based on a change in the configuration of the potentiometric surface of the Upper Floridan aquifer, and by linear changes depicted on aeromagnetic, aeroradioactivity,
gravity, and isopach maps (William H. McLemore, Georgia
Environmental Protection Division, Geologic Survey Branch, oral commun., 2000). This feature may have an impact on ground-water flow in the area; however, its geologic origin and nature are unknown.
HYDROGEOLOGY
A comprehensive study of the hydrogeologic framework of the Floridan aquifer system, which includes the study area, was conducted as part of the USGS R.ASA study and presented by Miller (1986); the reader is referred to that publication for details. Other useful summaries are included in Krause and Randolph (1989) and Clarke and others (1990)" The discussion that follows provides a frame of reference for the hydraulicproperty data presented herein.
Aoridan Aquifer System
The principal source of water for all uses in the coastal area ofGeorgia is the Floridan aquifer system, consisting ofthe Upper and Lower Floridan aquifers {Miller, 1986; Krause and Randolph, 1989). The Floridan aquifer system {Miller, 1986) consists of carbonate rocks of mostly Paleocene to Oligocene age that locally include Upper Cretaceous rocks (fig. 2). Thickness of the Floridan aquifer system in the study area ranges from less than 100ft where the aquifer system crops out in South Carolina to about 2,800 ft in Brunswick, Ga. (Miller, 1986).
.................. ...................................................................................................
'Modified imrn P<&l1(lt~ph n-i n!hers, 199 l :. Cmi'l<l.l ;md Krause, 2:00!),
2Moctifilld !rom Rarciolpl1 anti other;,. 1991; WMfN.: ~r.d Etlw~f<ls, 200 l "l\,1<1dffittiHmm Fails ar.<i o1hera, i 991 "!n k>cill Maas iflCh;c.ss Milk1m Pen<! aqurrer.
Figur~ 2, Geologic sncl hydrogeologic units nf the upper aml lower Coastal P!ain, coastal Genrgia, and adjacent parts of Snuth Carolina anrl Flor!rla.
6 Hydraulic Property of the Floridan Aquifer System
FEET
600
A
UPPER COASTAL i
PLAIN
j
Hydrogeologic Un!t j
Upper Three Runs aqui!er
0
Gordon aquifer
500
1,000
.J I
2,000
:t Cl
6
!>': l-
Permeable uni!
A'
i
SOUTHEAST lLOWER COASTAL
l GEORGIA j
EMBAYMENT
PLAIN
------ :! ~~
!Hydrogeologlel.Jn!t
j Surficial aquifer
?~~i ~~I 1
11,
i ,__..,.!_ _ _ __,!
i
Upper
i
Floridan aquifer
I
'
Lower Floridan aquifer
Confining unit
0
20
40MILES
0 20 40 KILOMETERS
VERTICAl SCALE GREATLY EXAGGERATED NORTH AMERICAN VERTICAl DATUM OF ~ 988
Fernandil'.a
permeable
zone
3,000 -1-------------------------------J.....l-Hytlrogeology mOO!!ied from Brooks and others, 1985; Miller. 1986
Figure 3. Hydrogeologic section of the Florida aquifer system along dip, upper to lower Coasta! Plain, coastal Georgia (modified from Krause and Randolph, 1989). line of section is shown in figure 1.
The Upper Floridan aquifer is highly productive and consists of Eocene to Oligocene limestone and dolomite (Clarke and others, 1990). Lithologic units comprising the aquifer crop out or are near land sutface in the northwestern part of the study area (upper Coastal Plain) and near Valdosta in Lowndes County. Ga. (fig. 1), where the aquifer is under unconfined or semiconfined conditions. To the southeast (lower Coastal Plain). the aquifer becomes more deeply buried and conf'med. In this report, clastic sediments of the Upper Three Runs aquifer (FaHs and others, 1997) in the upper Coastal Plain that are hydraulically connected to carbonate deposits of the iower Coastal Plain are included as part of the Upper Flmidan aquifer (fig. 3). The transition from carbonate
to clastic deposits generally occurs north of the Gulf Trough {figs. 1 and 3).
In some areas, several distinct water-bearing zones within the Upper Floridan aquifer have been identified. McCollum and Counts (1964) identified five water-bearing zones in and
around the Savannah-Hilton Head Island area in strata that
would later be defined as part of the Floridan aquifer system; the upper two zones are part of the Upper Floridan aquifer (Krause and Randolph, l989).ln the Brunswick-Glynn County, Ga., area. Wait and Gregg (1973) identified two distinct water~bearing zones (fig. 2} in the Upper Floridan aquifer (their "principal artesian aquifer"} and estimated that about 70 percent ofthe total flow from wells open to both zones
':as coming from the upp<2T wne. In Beat:.fort County, S.t., the term middle Floridan is U..'>ed by the State of S:>nth Carolina (Ransom and White, 1999) t\.>r a '-'iatcrbearillg zone approx.imately 7..50-550 Hbeh>w land surfa<.:e. For the purposes <lf this study, thb zone is piat;ed in the iowennost pan of the llppel Floridan ;tquikr (W.F. hlb, US. Geoiogical Survey, \vti;ten c;ommlm.. 2002: und Li\. Gellici, St>uth Carolina Dep:.:nment dNamral Resources, writ;en commu:n., 2iXl2).
The Upper Fb:rid;;m aquif.n is overlain. by Olig<ce:ne layers of silty day and de.n~ phosphatic J;,>lmnite that confine ami s<,par;ate the aquifer from overl;yiJJ}?; penneable tmits ofthe Bnmswid>: aquiv..;:r systet:n (Clarke, 2003}. The Upper F1orid>3.n aqnifer is underlain by a confining unit nf dense, re0ry,;;taHized limestmle anJ dolomite of the middle to upper Eocene that bydrau1ically separak the aquifer to varying degrees :from the Lower Floridan aquifer (fig 2 L Locally in the Brm!s',:vick, (ii.L an~<>-, (he ctmhning tmit i~ breached by f:mcturcs or <v->lutiml t<penin:gs tha.t enhanc.e the vmt!cal e-xchange of <.vmc:r between th<~ Upper and iA>wer F!;:)rician aquifers {Krause and Rawblph, 1989} and aflect the :>t~>r.age properties '->f !he .aquifers.
The Lov?er Floridan aquifer i,.;; cnsnposed main!y of1ower and middle Eoce.1:e <kf!mnitk hmeswne; but at Brun.:;wick, Cr>L the Hquif.er indude:> htghly permeable Paleocene and Late Cretaceous lime,.;;tone (Krause and Rand~1tph, l9S9), ht the upper Coastal Plain, the dastic Gordon aquifer {Brnob and (>tht'ts, 1985; L~!L.;; ar:.d others, l 997'l !san updip eqmvakn! unit that is hyd:rudicully GOm~ted t(l t'f.e Lc>wer F!nridali aqt1ife.r tflgs, 2 and. 3). tn some earhe:r publications {Le., C<nmt.;; and DmL-sky, !963\ s;mtigraphi<.::. units (sw;h as the Ta11ahatta or Lisbon Fnmraticns'lor an .age tcrn1 (such us Claibomian, as used i:n Faye and Md'adden, 1986) C!>rtdare with the LovierFhridrrn
rrquiier or its eqllivaknt clM,tk aq<nfers. Such nomenclature,
though no kmger used by !he USGS, is :;ho,,vn in some of the teferenc.e:. in Appendix A
The Lower Floridan aquifer include:.; several waterlx~aring zt.mes in pans of th<~ study aw.L ln the Savannah-Hilton. Head area, the lowennost \Vater~bearing zt<n.e ofMcCoUum and Counts (!964'! is induJ.w i:n the Lower Floridan aquifer n-V F. F>~1l:s, US. Geological Survey, written c.on1murL, 2.()03) hi routheastem South Carolina, Pak!)Cene and lower Eocene. uni~:;; can contain permeable beds, and production wdh :in this are<> are screened in these zones h>gcther with the overlymg Santee Umeswne {.Newc,om{\ 1993, 200{)), ln this report, these productive z~me.s, tugether with the Santee Limeston<~, are considered to be part nf the Lower Floridan aq\!ifer. l;; s<mtheasrem Georgia and nonl:v~astern florida, the Lower Flonda1l includes .a deeply buried and b.1ghly transn_1issive, saline '.vater~bearing tmit known as the I:ernandina permeable zone (Kram;e and Randolph~ !989). This unit is the probable snnrce nf saltwater conta.m.inatim> in.lhe Upper and Lo'w-er :Flo:rid;m aquifers at Bron:;wi<:.k, Ga" ;md JR<:honv:Ble, F1a. {Krause .and Randol:ph, 19~9},
Hydraulic conductivity, tnmsmissivity, and storage cu({finent are terms ust.)d to describe und quantify lhe capacity of the materials composing aquifers and conf:in.ing units to tm.n~mit and swre water, Detailed di~wnt<sinns of the$<: ;eml~ can be f<nmd in Lohman(! 972'! and Heath (1985},
Hydtw..llic pmpetties compiled and presented herein were derived fmm a variety of :.m1n::es including published reports, files (;f the USGS iJ; .i\tlanta, Ga,, and the USGS GrotH.::J,W.akr Site ln.venmry {GWSD database. T1K, GWSr database :3:nd USGS fik:; wmain USGS-approved aquifer,test resnlts !nduding most of the da!.a repnrted by Bush an.d Johnston (198S} fm Georgi>3.. Where possible, a pubht<hd ref~rence for th<~t<e test re:;uhs is med rather than citing the USGS fi1es, aithough in a few instances, th~ latter WU$ dw only source availabk Likm.ture hom 1944 thww&h 2003 was induded in !hi:; C!)mpi!atimL
The prefe.rred source (>f tr<.msmh.;;;ivity data compiled !!erein was f'lom nmhiple,wdl ;lquifer rests, :followed by :s:ingle-weH aquifer tests. Transmi%ivity esumates derived from ::>pecifk capacity data and reported by previou:; investigators also are inchtded; however, these data shoul.d he giv<m.ies:; crede11te than data derived fiom .aquifer tests i:n areas where both ty-pes of data e;ot<L Transmissivity derived from mul!:ipkwdl aquifer wsts are more repret<eniativc offidd condinons than est.hnates derivd from :;!l1gleweH a<pJi:fer tests (:->pcdtlc~capacity) because they retlect mea:mrem.en.t of a iarger vdume of aquifer matc-riat In this report, tm:nsm!ssivities reponed by previous i:nvestig.awr-s arc rounded to one significrr1;t figure.
Th.-j reliability of specific~capavity data for tran.:>missivitv estimates i,;;; influenced. by a variety of f<H.::tor.-s {Heat1l, l9R3) including: (1) transmissivity {lf the zone supplying water w th<~ well {which may ht~ kss than the transmiss1v:itv of the ll.quitert
{2) the storage coefficient of the aquifer: Oi the pu.mpi~g ' .
period; {4\ the effe(;tive :radiu;:; ofthe wen~ and (5) !he pumping rate. As the wdl eftkiency app:n>adm.& 10{) percent, the more ::;pecHk <:apa.c.ity :is reflective of aquifer transmtssivitv. Gener~
ally, wd1 efficiency is ~~onsi<kw.hly less than 100 pe:cent in
scrt>,ew.ed wells atl<i is higher, apprcut.hing 100 p;,e:r;..:.;nt in s(;-;:ne open~hok wells. Thus, specific-capacity estimatet< in op.m~hok~
wens may be ;.;:onsidered cbt<er w actual aquifer transmissivity,
wherea:; values derived in s-:;:reerwd wdl~ vuch as in areas whev-..) the Floridan aquifer system i:-; clastic) mav be C!)nsidered lower or minimum values <1f m:msmi~.siviiy, ,.
Faye and Smith (V>94'lused form:.1tim:> :resistivitv deri've:d from borehole geophysical log;:; to estimate hvdrautic ;,xmdw> dvity. These estimates then tan be couverte:ito transmbsivitv
us;d by multiplying by the aquifer !hickness. This approach wa~
to J)rovide transmissivity estimates for rmmcrica} sin:mlatinn of gro1.1n<.hs:1lter flow near the Savannah Rivet Site (Clarke and West, 1998), in the n<~rdnve,.;;tern p.art d' the study area.
8 Hydraulic Property of the Floridan Aquifer System
The methods of aquifer-test analysis or other methods used to estimate transmissivity are provided in Appendix A in order to qualify the estimates and the level of data reliability. Aquifertest analyses are categorized as nonleaky (Theis, 1935) or leaky (Hantush, 1960; Hantush and Jacob, 1955). Bush and Johnston {1988) noted that single-well tests may yield questionable transmissivity values when compared to those based on multiplewell tests. Consequently, the nonequilibrium, nonleaky analyses are further divided into Theis (193.5) for multiple-wen tests and Cooper and Jacob (1946) for single-well tests to provide a qualitative division of the derived estimates of transmissivity. The nonequilibrium, nonleaky analysis methods ofTheis (1935) and (or) the modified nonequilibrium analytical solution ofCooper and Jacob {1946) are (by a large margin) the most commonly used for tests conducted in the study area. In some older publications, the analysis method is not specified. In these instances, the most likely analysis method employed (based on the year of test analysis) is listed in Appendix A followed by a question mark. For aquifer tests that have both drawdown and recovery data and analysis, the transmissivity and storage coefficient entries listed in Appendix A generally are those computed from the drawdown data, unless otherwise noted. Estimates for both transmissivity and storage coefficient computed from recovery data are listed in the "Remarks" section of Appendix A.
In the Brunswick area, some selectivity was applied for aquifer-test results presented in this report. Maslia and Prowell (1990) concluded that some earlier aquifer-test analyses resulted in overestimation of transmissivity by not considering the upward vertical leakage to wells from lower water-bearing zones, a condition that has been documented in the area (Wait and Gregg, 1973). Additionally, it is possible that overestimation of pumpage may be a factor in overestimation oftransmissivity for some of the recovery tests that involved cessation of pumping at industrial weHfields in the area (L.E. Jones, U.S. Geological Survey, written commun., 1993, 2002}. As such, aquifer-test results presented in Jones and Maslia (19~4) are listed for the Brunswick area; earlier aquifer-test results were included only if they were consistent with results presented by Jones and Maslia (1994).
Verlical Hydmulic Conductivity
Estimates of vertical hydraulic conductivity were based on laboratory analyses of undisturbed core samples. Data include samples from the Upper Floridan and Lower Floridan aquifers and the overlying confming units. In publications in which laboratory analyses ofcores are presented, some depth intervals are given without assigning the laboratory result to a specific hydrogeologic unit. For these cases, depth intervals were assigned to a specific hydrogeologic unit during this study on the basis ofcorrelating the altitude ofth.e sampled interval with maps showing the altitude of tops of hydrogeologic units as described and mapped by Miller (1986) and Clarke and others (1990).
Laboratory analyses of core samples are limited by (1) very small sample size relative to field conditions, and (2) bias
toward more competent rock samples because core from fractured, solution-riddled, and friable rocks typically are only pa1i:ia1ly recovered or not recovered at an. Because of these limitations, core data may not be comparable to field tests, and results ofcore analyses may be biased toward th.e iower values that reflect matrix permeability rather than secondary permeability features,
Aquifer-Test Data Qualifiers
To help the reader evaluate the quality of aquifer-test results, qualifiers provided for analyses by Newcome (1993, 200()) and Jones and Maslia (1994) are listed in Appendix A. Newcome {1993, 2000) rated aquifer test results as follows:
E (Excellent)- Drawdown and recovery plots agree closely, or if data for only one plot is available, the plot provides a definitive value for transmissivity. Boundaries, if any, appear near to the same time on drawdown and recovety plots. Specific capacity is believable (well efficiency equal to or less than WO percent). No unexplainable extraneous effects. Discharge effectively constant.
G (Good}- Narrow range in possible solutions for transmissivity. Discharge held reasonably constant. If drawdown and recovery plots do not agree closely, then the reason is apparent. Specific capacity is believable. Few unexplainable extraneous effects.
F (Fair}- Plot of data for one phase of test may be clear but is unclear during other phases, or where only one plot is available, there may be substantially different possible interpretations. Discharge may have been poorly controlled.
P (Poor)- Plot(s) difficult to interpret or drawdown and recovery do not agree reasonably welL Extraneous effects distort plots. Discharge not held constant Discharge substantially increased or decreased near end of test, so recovery cannot be analyzed properly, There may be a substantial range in possible interpretations of the plots.
It should be noted that the Newcome (1993, 2000) rating system reflects not only the operational quality of an aquifer test, but also may be an indication of field conditions that do not fit the assumptions inherent in the analytical method.
Jones and Maslia (1994) rated aquifer-test results based on the fit of the drawdown or recovery curve to published type curves. Their definitions are as follows:
Excellent - all data points closely match the type curve.
Good- one or two data points fall off the type curve.
Fair- more than two data points fan off the type curve, making determination of unique match-point values questionable.
Where applicable, the Newcome (1993, 2000) and Jones and Maslia (1994) qualifiers are included in the "Remarks" section of Appendix A.
HVDRAUUC PROPERTIES OF THE
FLORIDAN AOlJIFER SYSTEM
fk~;,:pkt~ $UlUmarizing transmissivity data from 239 upper
::n Floridan \ells, \) 1..()Wer Fbridan wells, Rm:1 :multi-aquifer
wdb conmkted in b0d1 the Uppt":T :3.w.i Lower Fl!)ridan aquiters in DuvuJ C~mn.ty, Fla., are ~h<.nvn in figure 4; th~)';~~ dam are listed in Appendix A. The ho;<pbt:> indica!<: that reported tr.an$m!ssivitv d' th0 Upner F\midan is :.xm.sid<:~!!!hly highe:r thml that for the
L.~nq:r Floridan aquif<~r in th<; study area and that multiaquikr
wells ~~om:pkted in th"' Upper and Low~-r Fk>ridan aquifers
~hi)w trarJsnrissivitie:s cmnparable w th.<~ Uf)per Horidan. Stor
a-ge-o..::etTi~;:ic-nt d.at>l are limited to 115 wdh, of~,vhidl 106 are ti;r the Upper FkHidan, 3 lllC for the L;)wer Floridan, and f, are for mu!ti-aauifer wells completed in the Upper ami Lov;er Floridan aq;lifers. The folkw?lng sec1ions describe the distributim> ofhydnmlk propertie~ by hydrogeologic unit
Upper Floridan Aquifer and
Equivalent Clastic Units
Hydraulic pmpe-nies 0f the tipper Floridnn aquifer vary gr~atly in t!m stady are~, d.tl:e to the .heterogeneity (and h:;aHy Kl anisotropy"! of the aquifer awi !n the conilnemem (oT lack thereof) provided by c;:>!J.tlning units {Krause and Randd:ph, !9/N. p, 2A-25 )..A chara(~teri.stic ofthe Hs)ridan aquifer system, e:;pe~~iaUy the Upper F1orid;m a<pJ.ifer. is that in many places. zones of very high hydraulic conductivity exi$t within rdativdy smal.1 portions <.lfthe aquifer For ~xamp!e, borehole flmvmetel" tests ;.xmdm::ted at \Vaycmss, Ga. {Matthewt< and Krause:, 1984), mdi<:ate high penueahility zone:-> at de-pths below !and surface of 1,070.! ,090 ft 1240 g>3.liNls per minute {gal.!min.lt 75(L900 ft (500 ga1!min}, and 635~7.50 ft (L,lOO gal!min) timt aresepatated by zones of lower permeability.
Maps s.howi:ng L.'1e distributim> nftransmissivity and storage.:xx;:ffkient data forth<~ Upp~-r Floridan aqu!fet ba..'>ed on data hsted in Appendix A are $hown irt figures S mtd 6, re.>;pectively. Tranf<tnbsivitv of !.he l!pper Fhxidan aquikr and equivalent
clastk ~wits ~nges from 53{) n:t:d at weH 27JJ,i10 in Beaufort County, S.C.,, t>:>600,000 :ft2!d.a! wen 231JJ04 in Cs.<ffeeCounty,
Ga. (Appendix J\}. A! Waycw~s, Ware Cou11ty, Georgia, esti
mate.d !mn~mi,;;~ivity of the Upper Fklridan aquifer at wen 27G004 ranges from 1:m,NlO w l ,000,000 ft2:d, with the larger
vll1ue N1gin.ally mpotted by f'<h:!!lmws ~uid Krause 0 984).
Am~1y~i:-; ~1f the Waycmss aquifer test that produced the larger vabe oft<ansn.ri&'>ivity m.ayhavcheen complicated by an oscillatory w;rter-lcvd resp<.mf<e, resulting in an underrepresentation ofdrawdown and an (!Verpn~<iid:ion oftransmissivity. A re;ma1ysis of these data. using a van der K.amp mmlysis (see Kruseman and de Ritter, 1994) to eliminate til. oscillatory wate-r-level response, indicates that the transmissivity wu1d he as h)W as 150,000 ft1id (RL Faye, U.S, Geologkal Surey .relire(i, 'J<'ritten commun., 2002},
ln Utmer Floridan aqmfer ~arhcmate wcks l:>f the bwer
A~
~
Coastal Pb:i;1, the trm:tsmis.'>ivity i;;, b'l"e;lt;.-;r than 20,000 fhd
over a large area. with vatue,;; ex'.:<~eding 100,(}00 ft1!d in the
soulhe;bi~rn an<.i sou.tv.w<~ste:m p-art;; of the study Mea (figs, 5a
and 5b}, High lr>J.nsmbsivity JJl the southeastern parl of the
stu.dy ar~a ge;1eraUy s:.oin~:ides v>'ith the a:n;:a Gf: greatest aquifer
thi.ckne% (see thic1mes..;; maps by Mi!kr, 19%). Tr.xnsmi1>1>ivity
ofthe Upper Floridan aqu1fer is lowe;;,t north offhe GuHTrow~h
w1mn.; the aquifer i~ lhin and ct>nsists of1argdy cbstic sd:i
m.en.t:<, and along the Gulf Trough., whew 1ov<'twrmeabihty
r<:H;ks ;md :'iediment:> were dep<>sited. h! th<~ lh1r'.heastem pan of
study area {Burke ;md Screven C!)unt!es, Ga., an.d Hampton
County, S.C.), reported !mnsmi.::>;;,ivity of (tw Upper Flomh3.n
a..'1d Upper Thre<: Runs aquifers. (Appendix A) generally isle;:;;:;
than H)J}(){) n::;d, ranging from. 840 flid in northern Burke O:>unty, Ga., to! 1.000 B2td i11 Screven Co-umy,. Ga. {fig. 5al in
the .are<l z:,f the GuifTmugh, tran~~missl.vity ofth.e Upper Flori-
d;m aquifer is less thanlO,OOO t't2/d, t'JX!l;ing from L 700 f!2id at
wdll9KO{l5 in Berrien Cs:>m!ly, Ga., to '7/)00 t1;?hl in v,;ell
24POD6 in Tdiair C<m:nty, Gtt
Large variability in the range of tmnsmi~~ivity where the
tlpper Floridan aquifer is largdy carhnnate m~y indi,.:ate the
i1:1uence of fra<.:mr~ or Mimion openings and rda1e:d a:nisott-o-
pic d.islrihution ofhydmuhc properties. For example, reported
transmissivity of the Upper Florida:n >3.quife:r in ( 1} f.:amden
Com>ty,, Ga. ranges from 19,000 t'?id at \veH JJDOl 3 to
130.000 tt2Jd at wel133E027, located about 5 miles (mi) apart;
{2) Nasslr'J County, Fla,, ranges fr;}m about 30,000 fi'-/d in the
n vicinity of weH Nassau l to about i 70,.()()0 1id ill the vkinily
nf wdl33DN:W. a!.xnrt l m:i apart; (3) Glynn C<.:unty, Ga. range:; from 23,(X)0 ft2/d at wen J4H344,, to J60fi00 ft2Jd at
',eH 34H097, about 2 mi apart; and {4) Beaufort C!)unty, S.C., r-:mges frou1 530 ft1!d at weH 17JJ~i1D to 1 H\000 tY!d <H wdl.
27KK-f2J. about 3 mi apart (Appendix. A, fig. Sa,h). Given that
differences 1n aquifer thickness should 1x~ minimal over Ml.<.:h
&hmt distances in each area., the w!d-t range in tran:-;rnissivity
may be the result nf dl.t1hences in the distr!hutian offractures <tr
solution openings with-in ihe aquifer.
l'ossihk presence ofstnlCtm:al fen.tu:res that oou!d impm:.t
the d:istributis.:m of ,5;.d:utim1 ftlatnres h1 the Upper Floridan
aquifer were rep0rted in the Bnmswick, Glynn County, Ga.,
atea by M.asli.<t ;md Pmwd.1 (19%) and in northeastern Florida
(indud:!ng Duval Co1m1:{) by Leve (l%6, 1983). Be-::.ause
Camden County, Ga,. is midway be1wee:n Gtynn and Duval
Countiesv it li< possihk that simiiar structural feaHl.n:~s are pre:<>.es1t
in that area~ however, presence of such Jeatures has not been
do>;l!r.Her!ted.. ln. Beaufort County, S.C., uplift !n the vicinity of
.the Beaufort A:rdl. (t1g. 1) may have induced greater d.is..<>olutkm in the Upper Flori<hm aquit<;)r in t!mt area nnd, thus, a<.:~x<m!t for
som.c of the largevariatim: in aquifer tm:nsmhsivity.In addition
w structural influences, it is possible t}Jat:;;om~ ofthe variabiHty in aq~tifer transmi%:ivity tesuhs irom differe.m;es iJ! test
conditions or ana!ytical mel11od.
10 Hydraulic Property of the Fltnidan Aquifer System
NUMBER OF VALUES
i ,000,000 ~
239
100.~~ ffi.
53
32
rrLl-I -
10,000 f:
1
,~.. ....i....
~
~
i
1,000 ~
E
~
~
I
100L-------------------------~
Upper Pioridan lower Floridan Uooer
aquifer
aquifer
and.LO'Ner
Floridan aqullers
EXPLANATION
-,..- - 90th Percentile -75th Percentile
-50th Percentile
-25th Percenli!e -10th Percentile
Figure 4. Boxpiot shov.ing transmissivity of the Upper ami Lower
Floridan aquifers in the study area in coastal Georgla and parts of
South Carolina and Florida, and at multi-aquifer wells cam plated in
the Upper and lower Roridan aQuifers, Duval County, Florida.
Previous studies by Maslia (1987} and Wamer and Aulenbach (1999) have shown that the Upper Floridan aquifer is anisotropic in parts of the study area. The Maslia (1987} study indicated that the Upper Floridan aquifer is anisotropic at Brunswick and Jesup, Ga., with the principal axis ofthe transmissivity tensororiented north-northeast Thedegree ofanisotropy is greateratBrunswick than at Jesup, and there is greater variability bctween local- and regional~scale tests at Brunswick than at Jesup, Local-scale tests are defmed as tests conducted using a single pumping well and one or more observation wells; regional-scale tests are defined as those involving several pumping wells (such as those that might be present at an industrial we11field} and several observation wells. Regional-scale tests encompass a larger area than localscale tests and, thus, are representative of a huger volume of aquifer materiaL Maslia (1987) attributed greateranisotropy and variability between local- and regional-scale tests at Brunswick to preferential flow along vertical solution channels associated with high-angle reverse faults and fractures similar to those described by Prowell (1985). Maslia {1987} also indicated that because of the large variation between results derived from regional- and local-scale tests at Brunswick, local-scale aquifer tests "should not be extrapolated for use in regional aquifer analyses." Warner and Aulenbach {1999) reported that the Upper Floridan aquifer is anisotropic at St Marys, Ga., with the principal axis ofanisotropy oriented north-northeast, as was reported for Brunswick and Jesup, Ga.
At Savannah, Ga., Warner and Aulenbach (1999) reported that the Upper Floridan aquifer generaHy is isotropic with an anisotropy ratio of 1.2:1. The isotropic distribution ofhydraulic properties is demonstrated by reported tran.smissivities at aquifer~test sites in the Savannah area. In 12 ofthe 13 tests reported in Chatham County, Ga,, the transmissivity ranges from 20,000
to 46,000 rt2/d, with a higher transmissivity of 80,000 rt2/d
reported at well38Ql15 {Appendix A, fig. 5b). Storage coefficient oft.i.e Upper Floridan aquifer (Appendix
A, fig. 6a-d) ranges from about 0.00004 at weH 27HH-o3 in Beaufort County, S.C., to 0.04 at "Well 1" in Baker County, Fla. The latter storage coefficient is higher than the range for a typical confined aquifer (0.0001 to O.OOI, Heath, 1983). Higher storage coefficients normally would be expected in updip areas {western and northern parts ofthe study area) where the aquifer is semiconfined or unconfined, and lower storage coefficients would be expected in downdip areas where the aquifer is more tightly confined. In parts of the study area, however, high storage coefficients have been reported in some downdip areas where the Upper Floridan aquifer is deeply buried and confined. In the Brunswick, Ga., area {fig. 6c), the wide range of storage coefficient values were attributed either to pumping interferences during testing or to vertical leakage upward from deeper zones (Jones and Maslia, 1994).
I.Dwer Aoridan Aquifer and Equivalent Clastic Unils
Transmissivity ofthe Lower Floridan aquifer and equivalent clastic units ranges from about 170 ft2/d at wel138Y-h6 in Barnwell County, S.C., to about 43,000 rt2!d at wen 33E039 in Camden County, Ga. {Appendix A, fig. 7). In northern areas where the aquifer is comprised largely of clastic sediments (Gordon
aquifer, fig. 2), transmissivity ranges from 170 to 15,000 rtlid with a median of3,500 ttl/d. In areas where the aquifer is largely carbonate, transmissivity ranges from 500 to43,000 ft2/
d. with a median of2,900 &!d.
Although no aquifer tests were conducted in wells completed solely in the Lower Floridan aquifer in northeastern Florida., it is likely that t:ransmissivity ofthe aquifer is hig!J..-.possibly exceeding 100,000 ttl/d. Krause and Randolph (1989) stated that the transmissivity ofthe Lower Floridan aquifer in the vicinity of Jacksonvi.Ue, Fla., may be as high as 400,000 Wid, hut added that their transmissivity estimates for the Lower Floridan aquifer are qualitative and primarily based on thickness and estimates ofpermeability from geophysical well logs. An estimate ofthe transmissivity of the Lower Floridan aquifer in northeastem Florida can be obtained from tests conducted in multi-aquifer production wells in Duval County, Fla, that are open to the entire thickness ofthe Upper Floridan aquifer and a hlghpenneability freshwater zone at the top ofthe Lower Floridan aquifer {Spechler, 1994). Such multi-aquifer wells are designated as "IJF, LF" in Appendix A. Spechler (1994) stated, "Although the relative contribution ofwater from each zone cannot be determined, multi-aquifer wells probably derive much oftheir yield from the upper zone of the Lower Floridan aquifer."
Tablet Vert!ca~ hydrauHc conductivity of the F!tHidan aquitar system, cu:hta! Georgia, and adjac~~nt parts ot South Catu!ina anrl F!orirla.
fit f<e*t: f"Jd, ii;>:t pn thy;'', :kgr~:<: ',minute;;;''. so:md;;; <f..<J, <.iittn. ''.lltlt~ertain: , ;.k;:>;h nf :;;->.mpk t\N repcrtd. Svw~ 0/\ . C<:,,q~ia; 5C, S;:.;.;;h Cmt>hn<l. Hydml<Jg.ic tJ;)i!: :..FC, L;-w<:r Fhrith~n aquil<:r
cmrl!Hin;,: mti!, OFA. Li!'l~~=l' rlcrida aquik<: UFC. Upp'f Flodd<tn aquii<.;r ;;w;l~nirsf; ;mi.; t:FSC Ur;p.:'t HNithl ~>-tuif::~ :<Nni~(>Hiini.'":g tmit; LFA, L<.>w~r ri<Jridan &q,:ikr: hydwl.>;,;it tmi! ,;k::litl;:r;: <;rd::>,.t'tl in P'nntht~-x:s <k<ignaw equi,sk:nt :;la~ti;: uni!J
State County
___ ........... .,. ,
~.............
GA Hurb:
d(.). Ci;atham
do.
dt>.
d(}.
do.
d<>.
do.
~~f.l.
Glynn
dn.
do.
dfi.
do.
t1(!.
do.
$.;
do.
ik>
.;b_
do
i.J\>.
do
dH.
do.
d~!.
<k
<J;.>
dG.
<.\<.>
dt.~.
do.
dt.'.
<.k>
de.
d.o.
d:.::-.
do.
do.
dn.
4>.
d<>.
<k>.
d:o.
(Kl.
J;,_
do.
do.
W~!
!clootmt3r
~~2 '{;)2fi
Depth below land aurfuc.~ Ve-rtical
tat!tooe LMgltu 'l!:>p of
~rtom~--- nydrauHc
te!lt lntervai test Interval eonductlvlty
Sowrce ~f cla1a
Hyclmloglc urr!t
(ft) .........................................................................
J3'\~TS3'' Sl"4Y.l5"
3(~55
{it)
(ftld)
......................... ~~---
---"" .... ~~~~~~~~
3r~r.~
<>JXiO:lJG
L~::~:-:h hi>-.'i H~hcrs ~ j Y~:-6 :)
;Lf(.)
Remar!>:z
........................~~~~~~~-
~>i.ii:WiJi,
32""07"39'~ S1''l!'iW
l:(U~~.
g{(~
{}{}535
C;mnt.s<H~d lxm;;ky <,l%3:'
\.:FA.
;k,
j~..PiH5
do. Jl <sg:~f}"'
du.
8o=-s9~54"'
J .ll}.)
2!1
Ul16 ::!4
ll()Ut.M .Otlt\'1
dl.).
Fmh<<'(J96<il
!..l'C l.fFC
C~:;J~!.(y hrr~::~v. ~n~~~ f)1;g<.':<:t~Bt::~
dt.'.
d<;.
do.
226
~~4 j
.0()4
ck.
de.
:..h~.
HHH5
:)l<'Hr.~4x
8~'=-30\56''
6!5
635
.67
Wai;. (l%5)
Ub\
Ff>:<Si iif:::t<)\.:S gray iim<.v6t:m<:
dn.
ih
d<:>.
7()~
7l2
2L39
d<;
(!\-,. d;-
dt~.
>.1<.
do.
f>(j(J
gl2
.c:o:34
d<.>
d~.1.
il<;
df>.
<.h
do.
<}U(j
i;\2
.000!34
do
msc D<.1k>mitk !.imeslcr.c
~HH!32
3:~'"l(V~!.O~
~:<2~?S2"
5!9
'fl9
,<;>;)6
d<.>.
tFA
l:0s~;ihfe~H~~: g~~~?' hrH~:::;hw~~:-
rl;,.
do.
.k>.
%(1
5SO
Un32
do..
d<).
d(>.
dll.
do.
.k>.
642
662
6.6845
d~":t.
<'k>.
d:!.
;l;,.
do
;J;. ~,
6112
702
!8.1"2
dn.
(b.
d,.-,_
:h
do.
<.k>.
744
765
Ai~l!
t.kt.
dn.
do.
d<).
367
a8s
,i/!674
d. . ~.
fb.
;J'.).
;.};).
r.1~nr:-1i~.:J.: ~inh~Ston:c
;.h
dn.
do.
97i;
9'1<~>
04Ull
<k>.
tln.
<.!(>.
;J,"t.
d~-..:.
do.
L.(W.i
!.f5l
OWOU
(b,
t=fSC
D:>l<:..:ni!K: Jir.''''"';me; :><mbmJining by~t "'Ta>~)ting !he t~pp::r ;md k>W>.:'f W>~ter,J.><e.i>f i;;.~~ .z<)ne:; ;;fthe- Upp<~f Flmldar: <l(j<..<ifcr
'.k>.
<ln.
do.
lJJ53
j,tl65
iJOliM
dn.
tk>.
d.-,.
do.
l_(j'il.
j,i)!,<4
i):)){)54
<k,
dn.
df,.
t!tl.
(!\>.
do.
wn:n
Jt\
3 !"i)ii'24"
dn.
~n<;:~?42"
U.H 347
l.l ~4
.36'1
.Q<.)(l26"i .()Hl'!
ch 'Nait anJ Git~~~ i !9'!"<.)
(!;,.
d<.o
UFC tvl i::>::<:n<: nnil C <Jf Clark: amJ. <.>thd":< 1!990)
d<>.
flF
dn.
367
1'7
A
:k:.
(;F/<,
S:;_:_td:-,. hr~eE<:H.r;-:z: (>hgo.:-:c:r:t:
d<>.
do
>.1).
587
607
l61>A
dn.
&;.
d<J.
678
091>
!2(
<if},
dG.
,j;_,,
7N
'f~}:)
6.68
do,
(k>
Up::.x:r b:)<.~e,~n~' ~~,~)Htf~::ov.s firr:;:~;t(>H~:-
uo.
<i<.>. do.
do.
do.
f.~f$(1:-:r Et~~:t.~ne l~~n~~4~::~t'-'
a
a;=iii
'tl
~
i~ '
a
g.
t1i
;
:::!,
~
~
=:
i...
~
'1j
Ss '
-....
Table 1. Vertical hydraulic conductivity of the Floridan aquifer system, coastal Georgia, and adjacent parts of South Carolina and Florida.
[ft,
feet;
ftld,
feet
per
day;
0 ,
degrees;',
minutes;
,
seconds;
do.,
ditto;
?,
uncertain;,
depth
of sample
not
reported.
State:
GA,
Georgia;
SC,
South
Carolina.
Hydrologic
unit:
LFC,
Lower
Floridan
aquifer
confming unit; UFA, Upper Florida aquifer; UFC, Upper Floridan aquifer confming unit; UFSC', Upper florida aquifer semiconfming unit; LFA, Lower Floridan aquifer; hyd;ologic unit identifiers enclosed in
parentheses designate equivalent clastic unit]
State
---~~-~~-~~~-~-~-~-------------..........-..------
---------
County
Well Identifier
latitude
Longitude
Depth below land surface
------------------
Top of Bottom of
Vertical hydraulic
testinterval testlntervsl conductivity
(ft)
(ft)
(ftld)
Source of data
------.---------------------~-----------~
Hydrologic unit
Remarks
GA Glynn 34H337 31"08'24" 81"29'42"
935
--~----------.....-..--------~-~-------------~-----
954
0.000008
Wait and Gregg ( 1973)
----~
UFSC Probably semiconfining layer separating the
upper and !ower water-bearing zones ofthe
Upper Floridan
do.
do.
do.
do,
do.
1,088
1,105
.000004
do.
LFC Included in Wait and Gregg's aquifer test interval, but likely Lower Floridan confin ing unit
do.
do,
do.
do.
do.
1,490
1,503
5.3
sc Barnwell BW-243 33"12'09" 8134'40"
238
238
.16
do. Bledsoe{l988)
LFA Lower Eocene limestone LFC
do.
do.
BW-246 33"12'55" 8i 0 37'27"
172
112
.0012
do.
do.
do.
do.
do.
do.
do.
258
258
.034
do.
do.
do.
do.
BW-308 3318'42" 8136'22"
136
136
.566
do.
(UfA)
do.
do.
do.
do.
do.
169
169
.12735
do.
LFC
do.
do.
BW3!4 33!1 '28" 81"30'47"
141
141
.00037
do.
UFC
do.
do.
do.
do.
do.
62
62
.00048
do.
do.
do.
do.
BW-316 3310'57" 8140'43"
98
98
.00037
do.
LFC
do.
do.
BW-335 3308'48" 81"36'27"
161
161
.0019
do.
UFC
do.
do.
BW-375 33"16'30" 81".34'25"
210.5
211
.00257
do.
do.
do.
do.
BW-379 33"12'38" 8139'26"
167.5
168
.00022
do.
LFC
do.
do.
BW-.391 33"15'10" 8140'2!.
262
262
.04
do.
do.
do. Beaufort BFT-1672 3215'30" 8039'34"
---
-
.0056
Smith (1994)
UFC
do.
do.
do.
do.
do.
-
-
.0056
do.
do .
do.
do.
do.
do.
do.
-
-
.0141
do .
do.
do.
do.
do.
do.
do.
-
.072!
do .
do.
do.
BFt~l6"/4 32"16'36" 80"42'46"
-
.01082
do.
do.
do.
do.
do.
do.
do.
-
-
.00852
do .
do.
do.
do.
do.
do.
do.
-
-
. 22948
do .
do.
do.
do.
do.
do.
do.
-
-
.000557
do.
do.
do.
do.
BFT-1675 32 11'15" 8040'16"
~--~
-
.00279
do.
do .
do.
do.
do.
do.
do.
-
0.005570
do.
do.
-N
::::
<c....
I
5;:;.-
a"'Q
'cCo
~
a
.f ,
0 ;a::3.,
=Ill
l;lo
.&13
.1;.::.::
en
1
Tablet Verti1~<11 hydraulic conductivitY' of the Floridan aqHifar syshlm, cuastal G~wrgia. and adjat:ant !-lMts at St)Uth Garoiina and florida.
rn. f0,'l; ltd, 1i;d p~r <ily; ,,, {bg!'C<.,'!<; ', minu!c;;; ", S0,(.'ii<.i?;; d;J" <Ji:.ttL ~'. tt!K'enain; ..... dq~~h ,_,f s;.unpk n<)t r>.tmrtcd. Statr:: (;;\, (Jf:<">fg.i3; ;;c' Sf,;.::.h (ar:.>hn:l. Hyt\r:,!<:.j,~.i<.: <miL L.FC' {.(,wi:f Fbridan <l<.luif~t
__ ...... c<m.fini~;g <mit PF:\. Uppe:t nmida aquik!: VFC Um~n Fi<.:.:id<~n squifut wr:!h::.ing uait; U!'SC Ppp<'r F:od;h aquil':r s<miwnfirsi.:.\e. ttni!: UA, L:.)w::r Hmid<m ;;;.wikr.: hyd:1>bgic unit idcat<tkrs <>nd;)sd in
ponmth<'~";,s de~<i),.<nati: equi,skr:t .;;'la$\it: <mit]
._..,..,...,....................................,.~~~---~~ -~........................-...,
...................... -..........
..............................................., ,..~~-~-
Depth below !ami ~urtace Vmic.1!
...... ,.,.,,.,~.~~----
___ . State Ct~t.mty
W&!!
icl~mtifier
tatltud& l.<!ngffl.ldQ T~ of
Btrttt~m of
fQSt ifrt(!fVS~ t~st interval
..............,..,. .........................
{ft}
{ft)
~----------~ ._.........................,..,
hydraulic eonduethtlty
Soufc& ot data
{ft!d}
.........................................,.,_,,..,_,
sr:
J.k<~Uli;rt Bi-f!6A'> 32'';4'40" 1);)''4(!\~) .,
.0{!~~79
Smith (1 <r-i4)
Hydrotogic unlt
t~ff:
Rem<'lrli:s
.............................~-~-...........
do
d~).
d<).
<3<.:
dr:.
J.tHIWi;
do.
d<_}
do.
do.
do.
();)
de,.
.tl.l:Zi%
d<).
do.
de.
d<).
dn.
do.
d(>,
.00557
dn.
do.
d<).
dt\
BHcl617 32''!7'.18'' H{f42(rn<
.0\>~525
<ln .
d<>.
>h
d<),
do.
d<).
de.
,OiHID
<h.
do.
;.h
d<.:.
HFl'l679 3:n2'42'' ~v~3T4ft
,f}i){~~~6
d;.),
<'b.
d:.J:.
d<),
~.Y.:o.
dn.
dn.
.426'229
<.k>.
ik<.
d<>.
dt).
<lo.
::k>,
d<.1.
_(1(!622'1
do,
<.k>.
d<>.
de.
mT-l6!W 32"!7'!6'' so:-JY}49)~
.no.-?7R7
dn.
d<>,
d<>.
:Jn.
do.
1n
d:..--r.
.nr~~~25
<b.
d(>,
dn.
do.
tln.
:b.
do.
.?
..t.>.
do.
do.
dn.
d(,,
<.k>.
do.
,2
d:),
:.k"t.
~
Q.
;;!
<.k>
d:J.
BF.1-!Nr::< .F'l6'i.r\" S(Y;43122x
do
<J,>.
fb.
do.
d-).
J)t\>\li)?
d<>,
<k>.
.no:w:>4
do.
d::>.
.,a
(;~
do.
(~(}
t~l'T-224'> JJ.<'04'01') (ltl''44'41"
52.4
.~2.!>
,0(~~)252
Gf~-,qi7~.dmk~~ L;sb~}r&tr:-t}' Tc$;
dn.
i
Re]X>fl. f'r<;_i<><;t N<.>. ~'tlflff-228
~
(ll, F! p.. S>:fMmber 5, 2\J(x)
$'
::!(,,
do-.
d:.>.
ds;
dn.
67J
6~
Jl0t123?
d<>,
dn.
a
~
<};_<,
tln.
BFT1:250 Y~~~~iJ41'iTt f>W4fi'42"
7il.l5
7~ 65
Jl00249
<h
d(>.
~
1n.
do.
}}fLC:295 n"04'!4'' ~W42'55"
43.5
d::>.
de.
H!'T-2.291 3l';~ill3(' 3il'49\l(l''
.)63
439
,()()651.\
Gwt~-.chnics, I.al<onlt<.~ry T<':'>t UFC('1} Coarse-grain<".! ~alky :l:l
R<~pnrt Pn,jr:a Nn. 2001-2::5 ..
U!, 29 p.. Augus\ .29. 2(P.)!
Yi<
.4~ :95
<.k>.
un::i'') t ~nc..,~nt1m:~d ~~~r:<1
~
~-
t *~ '
do.
de.
do.
d(!,
de.
~<cg
57J
(!00534
<.k>.
\'fCC') Fin~::.. ~:.ra::r:~:d vaiky Hll?
_____ do.
de.
....,...........
...
.do.
1o.
:Je.
72..1
n ~
;}ON54
d<>.
1'fCf:'J
W'
t""n'
"'
~
~
.w...
14 Hydraulic Property of the Floridan Aquifer Syst&m
()
15
30M!LES
() 15 30 KILOMETERS
Bass modified hom U.S. Geological Survey 1:2,000,()()()-scafe digital data
EXPLANATION
Transmissivity, in feet squared per day
500 to 1,000
" 1,000to 10,000
e 10,000 to 50,000 e 50,000 to 100,000
e 100.000 to 600,000
~~ Estimated from 150,000 to i ,000,000 ()Nare County only}
Figure Sa. Transmissivity ofthi! Upper Floridan aquifer and equivalent clastic units in coastal Georgia and adjacent parts of South Caronna and Florida.
...
~ :'$~ G<'8-;">ft :t;:::1~GB-c8 {:
,. .... .-'
EXPLANATION Tr.ansmi:SSWity, in teet
squared per (lay
5M lo i,non
" LOC!O to 10,000
- 50,000 to WIJ,Qt.J @= 100,000 to 6Cfl,if.;O
... ......_
34JC.u;$:,
34J(J(,~*
....................
:;
<-
~HO?>J.
* :...::. i~i
:3:3!--l\ml
:33Hd<i-.. ~-
...
~.34H371
:'*'34-M1{!(l
~.34-H<}!.ll
.. J,-.-.-~-~
jo
...
.. -(""' ~
i -...,.-.-....:......,-~ !---: jo
figure Sb. Transrniss.istfty oftha Upper Flariaer: aquih.~r in Chatham and 61yrm Counties, Ge-orgia, ami Beaufort and J!lspar Cmmti-es, Sr1uth Gam!irm.
16 Hydraulic Property of the Floridan Aquifer System
N
Clinch
t ....... Lown-de~.......,....... ............,_
/
'
0
15
0 15 30 KILOMETERS
Base modified from U.S. Goo!ogical Survey 1:2,000,000-sca!e digi!!l! data
Well1
' e Lake City Well No. 2 '~--c----{._
i
! Colurnbtn..-J
--...._.
EXPLANATION Storage coefficient
0.0000'1 to 0.0001 0.0001 to 0.001
0.001 to 0.01
Greaterthan 0.01
Figure 6a. Storage coefficient of the Upper Floridan aquifer and equivalent clastic units in coastal Gemgia aml adjacent parts of South Carolina and Florida.
-...-
.... ,
.2&.tM4
.. <$: :
/ ;27KK-Y.8.
~- .'"
EXPLANATtON
Storage coefficient 0.00001 to 0.0001
...
$ 0.0001 to lJX!Oi
O.OlJ1 !u O.Oi
Base rrKJdme{l fmm
s. !} Qeo!oglc8l SW"'&~i
1:2,\lQO,O{l{l-.sm;~ (llgi".~J dat3.
()
S
H'!M!LES
t---~-.~nnf~~~~~~lnTJ
0
5
'l(H<:iL<t.tTER~<
Figure Sb. Stmagf.l tnefficient a! tfm Upper Floridan aquifer in Chatham County, Beorgla, Md Beeufart and Jasper Cmmtias, South Carolina.
18 Hydraulic Property of the Floridan Aquifer System
GLYNN
{)
5
0
5
tO KilOMETERS
Base mooifioo from U.S. Goo!Qgical Survey 1:2.000.00(}-scale tligita! <ia!a
EXPlANATION
Storage coefficient
" 0.000001 to 0.00001 0.0001 to 0.001 0.001 to 0.01
Figure 6c. Storage coefficient of the Upper Floridan aquifer in G!ynn County, Georgia.
Ba..o:;ed on Spechler's {1994) remarks, the transmissivity at these multi-aquifer wells is assumed to be mostly representative of the Lower Floridan aquifer (fig. 7c). Transmissivity at these multi-aquifer wells ranges from 2,100 f~/d in well D-168, to 200,000 ifld in well M503 {Appendix A, fig. 7c). The higher transmissivities in Duval County, Fla., likely are dependent on whether a solution feature is present in the vicinity of the well {G.G. Phelps, U.S. Geological Survey, oral commun., 2002).
Storage-coefficient data for the Lower Floridan aquifer are
limited to three estimates in Barnwell and Allendale Counties, S.C., and to six estimates from multi-aquifer wells in Duval County, Fla. (Appendix A, fig. 8). For the South Carolina tests, the storage coefficient ranges from 0.0003 to 0.0004. indicative ofa conftned aquifer (Lohman, 1972; Heath, 1983). The storage
coefficients for the mutti-aquifer Upper and Lower Floridan weBs in Duval County, Fla., range from 0.00002 to 0.02, with the latter value higher than the range generally cited for a confmed aquifer (Lohman, 1972; Heath., 1983). In the Brunswick, Ga., area, a similar wide range ofstorage-coefficient values for the Upper Floridan aquifer were attributed to either pumping interferences during testing or to leakage from deeper zones (Jones and Maslia, 1994).
Although transmissivity and storage-coefficient data are unavailable for the Fernandina permeable zone ofthe Lower Floridan aquifer, borehole~geophysicallogs from wells in the Brunswick, Ga., and Fernandina Beach, Fla., areas, show that iarge cavities are present in this zone, suggesting high transmissivity {Krause and Randolph, 1989; Jones and others, 2002; Phelps and Spechler, 1997). Krause and Randolph (1989) suggested that the Fernandina permeable zone may have transmis-
sivity comparable to southern Florida's "boulder zone," which
Meyer (1974) reported to be greater than 3,000,000 tt2Jd.
Vertical Hydraulic Conductivity
Estimates of vertical hydraulic conductivity for the study area are sparse and restricted to the Brunswick, Ga., area (Wait, 1965; Wait and Gregg, 1973), the Savannah River Site area {Bledsoe, 1988; Leeth and others, 1996), the Savannah-Hilton Head Island area (Counts and Donsky, 1963; Furlow, 1969), and the Port Royal Sound area (Smith, 1994). Clarke and others (1990) summarized data for the Brunswick and Savannah, Ga., areas and related values to more-current hydrogeoiogic nomenclature. vertical hydraulicconductivity data for both coruming
units and aquifer units are listed in table 1, and locations are shown in figure 9; values are plotted graphically by hydrogeologic unit :in figure 10.
Thirty-nine measurements ofvertical hydraulic conductivity for the Upper Floridan confining unit were compiled from corepenneameter analysis of samples collected at 17 sites, 12 of which are offshore of Tybee Island, Ga., and Hilton Head Island, S.C. (table l, fig. 9). Vertical hydraulic conductivity ranges from 0.000232 ftld at well BFT-2249 to slightly greater than 3 ft/d at well BFT-1676, both ofwhich are located offshore of Hilton Head Island, S.C. Vertical hydraulic conductivity of the Upper Floridan confining unit at Brunswick, Glynn County, Ga., is represented by a single value of0.0107 ft/d at well
34H337 (table 1). In the Savannah River Site area, vertical hydraulic conductivity of the confining unit at three sites ranges from 0.00037 ft!dat well BW-314 to 0.00257 ft!d at well BW-375.
..... /
t
0
15
:Y::>MlLES
{r-1---~---J
0 i 5 30 K!WMEH:J!S
U<l<W w!i!ed rrom O.S. G<:<<;~ii;<>;
Sur. . .~,.l 1.?:~(XX:,noG.-...~t~~ tiigil..~ d&%
::.......... ..e......~ )
N<...Ya! &:brrserlrs.;s
ease
Kings Bay
..,... .......__./
EXPLANATION Tnm:smisstvity In
5quaro f~ per day
10C!to 500 50\Ho 1,000
c.
.:;::
'?l(>.?t>'<'f<l:
$ HWOO to 100,000 @ iOO,OOtHc >,000.0!:)0
....~......~.....~ ~..~...
5
figure 7, Transmisswity of the L<lwer Fl<Jriclan aqurf~r and equhral!fnt cla~;tk: units in {Al cnasta! Georg!a aM adi~ct:~nt parts nf South CamHna and F!ofi{ia; (B} Barnwell and Af!enda!e CountiRs, South Carolina; and (C} mu!t!a{luifer weHs compieted !n th Uppf!t and lawer Floridan aqBikrs in Omrai Cuunty, Fioricla,
20 Hydraulic Property of the Roridan Aquifer System
EXPLANATlON
Storage coefficient
e 0.00001 to o.ooo: e 0.0001 to 0.001
Greaterthan 0.01
ALLENDALE
PW2.
We!i H a Wel!A \P
DU\lAL
WeU3
N
20MfLES
t
(}
10
20 KILOMETERS
Figure B. Storage coefficient of the lower Flnridan aquifer and equivalent clastic units in Allendale and BarnweU Counties, South Carolina, and at multi-aquifer W9l!s cnmpleted in the Upper and lower Floridan aquifers in Ouvai County, Florida.
In addition to vertical hydraulic conductivity values compiled from core samples, Hayes ( 1979) estimated values for the Upper Floridan co11fining unit in Beaufort County, S.C., based
on aquifer-test resuits analyzed using the Hantush-Jacob leaky
aquifer analysis method (Hantush and Jacob, 1955). Although exact locations ofwell sites were not provided in the Hayes (1979) report, estimates ofver>Jcal hydraulic conductivity range from 0.005 ft!d at the Port Royal Clay Company in Port Royal, S.C., to 0.01:5 ftidat the Burton weUfieid at Burton, S.C. Hayes (1979) concluded that an average vertical hydraulic conductivity for this unit for Beaufort and Jasper Counties, S.C., would be 0.001 ftld. Estimated vertical hydraulic conductivities reported by Hayes (1979) likely are somewhat higher than actual values because the Hantush-Jacob method does not distinguish between leakage coming from units above or below an a4uifer. Thus, it is possible that some of the leakage was derived from underlying units.
Vertical hydraulic conductivity of the Upper Floridan
aquifer was compiled for five sites, three of which are located
in the Brunswick, Glyn..11 County, Ga., area (table I, figs. 9-1 0). Reported vertical hydraulic conductivity ranges from 0.00134 ftld at we1133H115 to 160.4 ftld at well34H337. Lower vertical hydraulic conductivity was measured in parts of the aquifer that are dominated by matrix permeability; higher
values occur where dissolution of rock has produced secondary permeability.
At Brunswick, Glynn County, Ga., upper and lower waterbearing zones of the Upper Floridan aquifer are separated by a semiconfining unit consisting oflow-penneability limestone (Wait and Gregg, 1973). Vertical hydraulic conductivity for this unit was determined at three sites and ranges from 0.000008 ftld at wel134H337, to 0.000134 ft/d at well 33Hl15 (table l, figs. 9-10).
Vertical hydraulic conductivity of the Lower Floridan confming unit was compiled from 10 samples at 9 sites, most of which are located in Barnwell County, S.C., :in the vicinity of the Savannah River Site :in th.e northeastern part of the study area (table l, figs. 9-10). Near the Savannah River Site, values for the Lower Floridan (Gordon) confining unit range from 0.00022 ft/d at well BW-379 to 0.16 ftld at well BW~243 (table 1, fig. 9). Elsewhere, vertical hydraulic conductivity for this unit is 0.000004 ft!dat well 34H337 at Brunswick. Ga., and 0.000668 ftld at well 36R006 near Savannah, Chatham CoUllty,
Ga. {table 1, fig. 9).
Only one estimate for the Lower Floridan aquifer is available at a well at Brunswick, Ga. (table 1, fig. 9). At well 34H337, the vertical hydraulic conductivity is 5.3 ft!d at a depth of 1,490-1 ,503 ft below land surface; this value is comparable to values for the Upper Floridan aquifer.
.--
......
-......
~32Y020
....._
......
'--:
:...
--...
../
EXPLANATiON 34H337 Well and &Jte name
i
0
20 KJLOMET1"!S
N
...
t
f.!aAA mMl!il:>d lit-tr< !.lcS. G&o!ogiclli Survey ~ .:2..(l{!(},(K}(!"-;'~~ <!igit&l d;m
/
figure !l Location ni site:s with srort~Cui hy<lral;!i{>CMdm:tivity data torthe norrriuf1 aquifer -WStflm, Burkt.l, Chlrtham, and Gts{l"ln Counties, Gl2"0rgi!l, anri Bamwen and BsaufortCcfurttit.~s, Sm<th Carolina.
22 Hydraulic Property of the Floridan Aquifer System
............... ~~~~~"~'"~!~~~.~~~~~~~~~
i UPPER FLORIDAN CONFiNING UNIT
1 UPPER FLORIDAN AQUIFER !
I
i
'j SEM!CONFINING UNIT (Brunswick area only)
......
LOWER FLORIDAN CONFINING UNIT
*
LOWER FLOR!OAN AQUlFER
+
0.000001
.l
0.01
-!~
100
VERT!CAL HYDRAUliC CONDUCTIVITY. IN FEET PER DAY
10,000
figure 10. Distribution of vertic a! hydraulic conductivity for selected hydrogeologic units of Floridan aquifer system.
SUMMARY
The Coastal Sound Science Initiative is a series ofscientific and feasibility studies to support development of the State of Georgia's final strategy to protect the Upper Floridan aquifer from saltwater contamination. To support this effort, detailed information regarding the hydraulic properties of Floridan aquifer system and equivalent clastic sediments in a 67-county area ofcoastal Georgia and adjacent parts ofSouth Carolina and Florida were compiled and evaluated to provide data necessary for development of ground-water flow and solute-transport models. Data include transmissivity at 324 wells, storage coefficient at 115 wells, and vertical hydraulic conductivity of 72 core samples collected from 27 sites.
In the upper Coastal Plain, sediments equivalent to the Floridan aquifer consist of thin clastic sediments; in the lower Coastal Plain, the aquifers consist of a thick accumulation of carbonate rocks that commonly have solution features and in some places have fractures. Prominent structural features in the area-the Southeast Georgia Embayment, the Beaufort Arch, and the Gulf Trough-influence the thickness and hydraulic properties of sediments comprising the hydrogeologic units. The Southeast Georgia Embayment is a shallow east-tonortheast-plunging syncline in which Coastal Plain deposits are thickest in the study area. In the vicinity of the Beaufort Arch, centered near Hilton Head Island, S.C., Coastal Plain deposits are thinner and are at shallower depths than near the Southeast Georgia Embayment. The Gulf Trough is a zone of relatively thick accumulations offme-grained clastic sediments and argillaceous carbonates in which permeability and thickness of Coastal Plain deposits are low.
Hydraulic properties of the Upper Floridan aquifer vary greatly in the study area owing to the heterogeneity (and locally to anisotropy) of the aquifer and to the confmement (or lack thereof) provided by confining units. Transmissivity of the Upper Floridan aquifer and equivalent clastic units was detetmined at 239 wells and ranges from 530 feet squared per day (ft2/d} in Beaufort County, S.C., to 600,000 f~/d in Coffee County, Ga. In carbonate rocks of the iower Coastal Plain, transmissivity ofthe Upper Floridan aquifer generaHy is greater
than 20,000 ttZici, with values exceeding 100,000 ftZ!d in the
southeastern and southwestern parts ofthe study area {generaHy the area of greatest aquifer thickness}. Transmissivity of the Upper Floridan aquifer generally is less than 10,000 f~/d north ofthe GulfTrough where sediments comprising the aquifer, or its equivalents, are thin and consist largely ofclastic sediments, and in the vicinity of the Gulf Trough where low~permeability rocks and sediments are present.
Large variability in transmissivity in Camden and Glynn Counties, Ga., and Nassau County, Fla., indicates anisotropic distribution of hydrauHc properties, which may result from fractures or solution openings in the carbonate rocks. Storage coefficient of the Upper Floridan aquifer was determined at 106 wells and ranges from about 0.00004 in weB 27HH-o3 in Beaufort County, S.C., to 0.04 in weH 1 in Baker County, Fla. Although higher storage coefficients normally would be expected in updip areas where the aquifer is semiconfmed or unconfined, high storage coefficients have been reported in some downdip areas where the aquifer is deeply buried and confmed. In the Brunswick, Ga., area, previous investigators attributed a wide range of storage-coefficient values either to pumping interferences during aquifer tests or to leakage from deeper zones.
Tntl11-"mis:>tVl!Y rf the i./.;we-r Flondau aquif<::r <Hid
e{{uivak:rt updip, cia.:"tic B?it::; was detennined at 53 'Nel!s, ranging from alxm> l/0 fbd in Harnwdl Cnnnry, S.C, to about 43.{)00 tt2!d in Carnd.en c~runty, Gtt Transmi:->:->iv:ily d' flK~ LOW!?f Fklridan aquith is greate:->1 where ihe ;;;.quith is !hickest~~-in :-><)Uthea$tem Georgia and twrthea$tem Florid<J;---wben' estimates >f :r.an::;miss!vity are greater than 10/H)0 f('::d and ~n <.:<n~ weH whew the value is<!;-; b.gh a-; 200,{)00 ft2:d. AWwugh no aqt1ifer tthts were conducted in wdl-s cm:nplete--J. Si)kly :i:n the L.:>wer Fbridan aquifer in northea-:;;tern Florida, it is likdy th;tt tran$m:!f<sivity of this aqu!er b high, po$;-;ibly exe--~ding 100,000 f?/d. Trans-missivity of1he Lower Floridan aqu:&:r in northeMtem fk--.rida was ~stimated from te;-;ts ;.xmducttd !11 nmhi-aquifer pr{ldu;,;tion
weHs located i11 f>uval Cmmty, Fla., that are open io th<:: Upper Floridan aquife-r an<!: to ~l h!gh~pemwabiiizy fresJ:n.vat-er zone al the top d th<~ L:~wer Horidan aqu:ilb. Tnm;-;mi.ssivity a! these multi~aquifer wens mnges from 2,100 to 200/)00 fe/& with larger mmsmi.ssivities dep.:-ndem <m whether a soluti-on feature is presem in the vi;.;:ln!~:; Bfthe weU.
St<!rage~c{~.-efficient dat;l K~r th<:: L}wl.CrFbridrul aquifer are limited W thr{ce estimates in Barn:weH and Allendale Counties, S.C. and to e$timates dekn:nined from six multi-aquifer tests in Duva! County, Ha. In the S:>uth Carolina test-;;, dt<:: ,-;;t,")mge coef-
tkient ranges from 0.0003 to 0.0004 and is indkative of.a con fined aquifer. The swrage~coeflh.:ient values at the combined Upper .an.d Lmver Floridan weHs in Duv.al C->>tmty, Fh.,, ranges fl-om 0.00002 t;.} \Hl2, with the latter value higher than the range gen-ereH:y cited for a C!)trfind aquif<~L fn the Bmnf<wick, Ga., area, previml$ investigators attributed a similar wide ran_ge in st<lrage coefficient fbr th~ Urrxlr Fhx!cian aquifer either to pump:in_g interferences during aquifer t-ests or K! leakag-e of water from dee-per :wl!es,
Thirt_y~n!ne measurements ofvertkal hy-draulic conductivity for the Upp<::r Floridan confining unit were <kten:nined fwm cor-e-per.ueanwter analysis of samples coHected from 17 sites, J:n<K"t of which an:l ioca!e:d at Tybee Island., Ga,. and ot1\hore of Hilt-on Head Jshrnd, S.C. Vertkal hydruuhc <:om1n~--:ti:vity s-ange-s fr-om 0,000232 fee1 per day {ftid) to t;l!ghtly greater than J flid a!. U site:--; kcawd a! Tybee bland., Ga." m!d ff>shore of Hilton Head bland. S.C~ h 0.0107 ft:d a! l site in B-n.msw:ick, Ga.; and ranges from 0.00037 to 0.002.57 Hid at 3 sites in the vicinity !)tttte Savannah River Sitt;. In additkm !.o values determined from core samples, vertk,al hydmulk G<)nductivity of the Opper Floridan cBnf!ning unit in Beaufort County, s-.C, was estimated by aprevbu..s :inv-estigator using the Hantu::;h--Jawb l-eaky aquifer analysis method-~" estim.ates rmwe from 0.00.5 fiid at Pmi Royal. S.C., to 0.015 fi!d ;rt Burtm!, S.C; however, these estimates likely are high due to l.eHkage of water from underlying tmit::-;.
Venkul hydraulk c<axlm;tivity of the Upp-er f!o:ndan aqui~ fer W<lS determined at five sites, mostly located in tb.e Bru.nswick, Ga., area, ranging from 0.00134 ft!d tD 160 ft'd. Lower verticil hydraulic condw~tivity w.as me--asured in sanrples col lected from pam of the aquifer that are dominated by matrix
permeability: higher values occur where dissolution h.a~ pro--
duced seC(;>lldary permeability. v~~rtica) hydraulic ~onductivity
fi;r tiw :->em.kmrfi:ning unit separating the upper and ks'<ver '<vater-bearing zone;-; d dw llpper Floridan aquikr at Bnm~ ~;-wh.:k, Ga., range fmm O.OOOOOS to 0.009l34 ft/d.
'V'ertic,al hydru\!l:i;.; conductivity {1f the Lo-.,ver Floridan confining unit ~/a.<; detem1iued from H) sam:pks <J;t nim3 :;;ite::-;, most of '<Vhi:.;h are lo<.:ated in :he vicini!y nf1he Savannah RiV(..'f Site iJ! 1lu3 no:rl1>easkm part ofthe study area. In thi8 area, valuec:; fGr the Lower Horidan (Gordon\ wnfining tmit range !imn ~109022 to 0, !6 ft!d. E1sewhere, vertical hydraulic conductiYity for this unit is 0Jl00004 ft/dat one wdl at Brunswick (h, ami 0.00(!6-5S !tid at <.:<m; wdl near Savannah. Ga, The vertical hydrauii;..: conductivity of the Lmver Floridan aquifer measured in a core san1:ple wllectei! from a well at Hrunswi~k (h., is 5.3 ft!d; this value !s cowiparable to vatues for the Upper Floridan aquifer.
SELECTED REFERENCES
Applie-d Coastal Re-E,earch Laboratory, 2{}02, GulfTrou~!h and SatiHu Line data an.aiysi:->; Oem-g:ia G<~o1ogk: Survey Project Report 48, variously paged.
Au.n>tt, W.R., and Newcome, Roy, Jr., 1986, Selected aquifer test infor.umioo for ~he Coastal Flam aq:uiier,:;; of South Carolina: lJ.S. Gooiogica1 Survey Water~Resources Irrvestigatioms Report S&-4159, 50 p.
Benta!l, Ray, l963a, Metlmds of detem1ining pem1e.ability,
mmsmis.:;;il>itil;y, and drawdown: U ,S. Geoknri~~.al Survey
Water~Supply Paper 1536-I, 104 p.
--
Berrtdt Ray, 19-63b, Slwrtcut:-> and special problems in aquifer
lests~ U.S. Geological Survey Wat-er~Supply Paper 1545-C.,
H7p.
.
Bentley, C.B., 1977a, Surface-w;;;.terand gn:.und-water ftamres,
Clay County, .Fbrida: US, Geological Survey WaterResmuees hw-estigations Repolt 77-87, 59 p.
BentLey, C.R, 1977b. Aquifer-test analysis for the Floridan aqu:ikt in Flagkr. Puutrun, and St. Johns Counties. florid~1: U.S. (-feologkal Survey W<Her~Supp!y Paper 77-36, 50 p.
Bentley, C.B., 1979, Aquifer cocftkients determined fr(~m multiple wdl effects. Fernandina B~aeh, Florida: (irou;ld Water, v. l7, no, 6, p. 52.5---531.
Bled;-;oe, R 'iN., 19~8, SRP baseline hydrogeologic inve$tigat!on -Phase IR Aiken, S.C,, EJ. du.P<.mt de Nemours & Co., Savannah River Laboratory, DPST-R8~627. variously page-d.
Brooks. Rebekah, Clarke. J.S., and htye, ftE., 1985. Hydrogeology of the Gordon aqlti:!~r sy;-;tem of east-central
Georgia: Georgia Geologic Swvey h1fom1ation Circular 75. 41 p,
Burt, R.A. Bdval, f>.L, Crou..;h, t;.l.S,, and Hughes. 'WB.
l. 98 7, GW.hydwlogic data from :Port Royal Sound, Re-aufon County, Smtth Caml!na: U.S. Geological Su:rvey Open.-Fiie R~port il6~49"7, 67 p.
24 .Hydraulic Property of the Floridan Aquifer System
Bush, P.W., 1988, Simulation of saltwater movement in the Floridan aquifer system, Hilton Head Island, South Carolina:
U.S. Geological Survey Water-Supply Paper 2331, 19 p.
Bush, P.W., and Johnston, R.H., 1988, Ground-water
hydraulics, regional flow, and ground-water development of
t.1.e Floridan aquifer system in Florida and in parts ofGeorgia and South Carolina: U.S. Geological Survey Professional Paper 1403-C, 80 p.
Ceryak, Ron, Knapp, M.S., and Bumson, Terry, 1983, The geology and water resources of the upper Suwannee River
Basin, Florida: Florida Bureau of Geoiogy Report of Investigations No. 87, 165 p. Clark, W.Z, and Zisa, A.C., 1976, Physiographic map of Georgia: Georgia Department of Natural Resources, Geologic Survey Branch, Atlanta, Georgia. 1 map, scale 1:2,000,000. Clarke, J.S., 2003, The surficial and Brunswick aquifer systems-alternative ground-water resources for coastal Georgia, in, Hatcher, K.J., ed., Proceedings of the 2003 Georgia Water Resources Conference, held April23-24, 2003, at the University of Georgia: Institute of Ecology, the University of Georgia, Athens, Georgia, p. 664-67L Clarke, J.S., Falls, W.f., Edwards, L.E., Frederiksen, N.O., BybeH, L.M., Gibson, T.G., and Litwin, R.J., 1994, Geologic, hydrologic, and water-quality data for a multiaquifer system in Coastal Plain sediments near Millers Pond, Burke County, Georgia: Georgia Geologic Survey Information Circular 96, 34 p.
Clarke, J.S., Falls, W .F., Edwards, LE., Frederiksen, N.O.,
BybeU, L.M., Gibson, T.G., Gohn, G.S., and Fleming, Farley, 1996, Hydrogeologic data and aquifer interconnection in a multi-aquifer system in Coastal Plain sediments near Millhaven, Screven Co., Georgia: Georgia Geologic Survey Information Circular 99, 43 p. Clarke, J.S., Hacke, C.M., and Peck, M.F., 1990, Geology and ground-water resources ofthe coastal area ofGeorgia: Georgia Geologic Survey Bulletin 113, 106 p. Clarke, J.S., and Krause, R.E., 2000, Design, revision, and application ofground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida: U.S. Geological Survey Water-Resources Investigations Report 00-4084, 93 p. Clarke, J.S., and West, C.T., 1998, Simulationofgrotlnd-water flow and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina, predeveiopment through 1992: U.S. Geological Survey Water~Resources Investigations Report 98-4062. 134 p. Cooper, H.H., and Jacob, C.E., 1946, A generalized graphical method for evaluating formation constants and summarizing well field history: Transactions American Geophysical Union, v. 27, no. 4, p. 526--534. Cooper, H.H., and Warren, M.A., 1945, The perennial yield of artesian water in the coastal area ofGeorgia and northeastern Florida: Economic Geology, v. XL, no. 4, p. 263-282.
Counts, H.B., and Donsky, Ellis, I963, Salt-water encroachment, geology, and ground-water resources of the Savannah area. Georgia and South Carolina: U.S. Geological Survey Water-Supply Paper ! 611, 1OD p.
Dyar, T.R., Tasker, G.D., and Wait, R.L., 1972, Hydrology of the Riceboro area, coastal Georgia: U.S. Geological Survey Final Report To Georgia Water Quality Control Board and Interstate Paper Corporation, 74 p.
Falls, W.E, Baum, J.S., Harrelson, L.G., and Brown, L.H., 1997, Geology and hydrogeology ofCretaceous and Tertiary strata, andconfinement in the vicinity ofthe U.S. Department ofEnergy Savannah River Site, South Carolina and Georgia: U.S. Geological Survey Water-Resources Investigations Report 97-4245, 125 p.
Faye, R.E., and Mayer, G.C., 1996, Simulation ofground-water flow in southeastern Coastal Plain clastic aquifers in Georgia and adjacent parts of Alabama and South Carolina: U.S. Geologica! Sruvey Professional Paper 1410-F, 77 p.
Faye, R.E., and McFadden, K.W., 1986, Hydraulic characteristics of Upper Cretaceous and Lower Tertiary clastic aquifers -eastern Alabama, Georgia, and western South Carolina: U.S. Geological Sruvey Water-Resources Investigations Report 86A210, 22 p.
Faye, R.E., and Smith, W.G., 1994, Relations of borehole geophysics to the horizontal hydraulic conductivity and
dissolved-solids concentration in water of clastic Coastal
Plain aquifers in the Southeastern United States: U.S. Geological Survey Water-Supply Paper 2414,33 p. Ferris, J.G., Knowles, D.B., Brown, R.H. and Stallman, R.W ., 1962, Theory ofaquifer tests: U.S. Geological Survey WaterSupply Paper 1536-E, 174 p. Furlow, J.W., !969, Stratigraphy and economic geology of the eastern Chatham County phosphate deposit: Georgia Department of Mines, Mining, and Geology Bulletin 82, 40p. Gawne, C.E., and Park, A.D., 1992, Water-supply potential of the middle Floridan aquifer in southern Beaufort County, South Carolina (report to the Town ofHilton Head Island Water Commission): South Carolina Water Resources Commission, Beaufort, S.C., 34 p. Gelbaum, Carol, 1978, The geology and ground water of the Gulf Trough, in Short Contributions to the geology of Georgia: Georgia Geologic Survey Bulletin 93, p. 38-49. Georgia Environmental Protection Division, 1997, Interim strategy for managing saltwater intrusion in the Upper Floridan aquifer of southeast Georgia, April23, 1997: Atlanta, Ga., Georgia Environmental Protection Division, 19 p. Gregg, D.O., and Zimmennan, E.A., 1974, Geologic and hydrologic control of chloride contamination in aquifers at Brunswick, Glynn County, Georgia: U.S. Geological WaterSupply Paper 2029-D, 44 p. Hantush, M.S., 1960, Modification of the theory of leaky aquifers: Journal of Geophysical Research, v. 65, no. 11, p. 3713-3725.
Hantush, !YLS., ;mJ .hcoh. CE., l%5, Nok!';teady radial flow in <m infi:nite ieaky aquifer: Tramachons Ameri<:an Get~phy:-;ical Vni<>n, v. 36, no. l, p. 9510D.
fbm~bon, L(9., and Fath, \V.F. 2{'1\}3, Hydwgeology and aql.Jikr !e::<h in the Floridan aquifer sy::.iem at ~1ected sites, ;;ou!';tal Georgia, ?.H01, in Lr;eth, D.C.. Clarke, JS., Craigg. SJ)., und Wipperfurth, C.L 2C~J3, (:f:rmmd-\vater oonditions and .~tudies in Georgia, 200!: U.S. (re<>iogka1 Su:rw;y \Vat..:rv Resm.lrces Inve,-;tigations Rep\;rt 03-4032, p. 82-87.
Hayes, LR., \979, The ground-water reS<.urces offkauii>rt, C0Heton, Hamptt>!l, a:nd .k:sperCountie&, Sl:>uth Can.>hna: S;,>uth Car..11ina Wate:r Res<:m.r(:~sCommission Report No. <f,
91 p. Heath, R.~.. l Yf!J, B<$$lC J.,>roundWa!x~r hydn.'h,gy: U.S.
G!::oiogica1 Survey Wa!eJ~Supply Paper 1220, SSp. Jacob, C.E.. 1%3, Correction of dra-.vdowns caused by a
pumped wdl tapping less than the fi..!l! thickne::<,-; of <tl1 a.quifer: in U.S, Ge!)logical Survey W<Itcr~Supp:ly Paper
1536-L p. 272-292. Jones. LE, and Ma~Ha, 1-kl.. , 1994, Selected gr<Jun.d..wate:r
dma, and results of aquifer t~b f<)r the Upper Fi<>rillim aquifer, Brunswick Glycrm (\!unty, Georgia, area: U.S. Geological Smvey Open.:File Report 94-520, i07 p. Jones, LE., ?mwdl, DL.. and rvtasha, M.L., 2002, Hydrogeology and wa!~~r quaht'/ {J978) of tite Floridan aquifer sy!!<tem at U.S. Ged<>g;i<;a! Survey Test WeH 26, on Coloneh l~hmd, near Brunir\.vick, Georgia: U.S. Geological Stl.rvey Water-Resource:,:: lnvestiga!ion5 Report 02-4020,
44 p. Kdlam, \1.F . and Gnrd-ay, LL, 1990. Hydrogeology of1he
GulfTwngh ... A!)aladr!cn!a embayment area, Georgia: Georgia Geol~>gic $urv13Y BuJk!i:n 94, 74 p. Krmtse,ll.t.. .:md Randdph.. R.R, l989, Hydrology i)f the Floridan aquifer system in. sowhea.~t Georgia and adjacem pa:rt~ ofFlodda and S<>uth Carolina: li.S Geo1ngka1 Survey Profes::>ionu:l Paper !403-D, fS p. Kru:-;eman, G.P., und d.e Rittt.'r, KlL !994, i\nalysb and evaiuati<>1l nfpumpwg test data: Publication 47, Intema! io:na1 Institute For Lmd RetJa.matim1 and llrtpn.wement, The Nederland~., 377 p. Leeth, D.C., Falls, W.F., F.d<.vard....:;, LE., fredrkksen, N.O., and Fleming, R.F.. ! 996, Get)i!>gic, hydrGlogic, and water chen:li::Mry datu for a nmlti-aqu.ifer system il! Coastal Plai:n sedim.:.nts near Girard, Burke County, Georgia: Georgia Geologic Survey h1formati<:'m (\r<~ular !00, 26 p. Lev<::, G.W., 1966, Gmund Wtltcr in Duva! an.d N3$t<au C,>unlies, Florida: florida Geo!ogkal Survey Rep<m of lnves!:igat!o:ns nt~.43, 9l p. Leve, G. W., 198..1, Relati-!)nof.;mK:eakd fault.<> to water quality and the fom<atk-n of$Ohttion feamres in fueFh>nd.anaquifer, nnrtheao:;tem F1orkk Jou:mal of Hydrology, v, 61, no. 4, p. 251<~64. Logan, \V.R., am) Eukr, GJvt, 1989, Geologyandgn>\md--wa!er re!';ou:mes ofAUendak, Bamburg, and Barnwell Counties and purt of Aiken C!)urtty South Carolinw South Crrniina Wat~~r Resoulces Commis!Si0n Report Number l5 5. 113 p,
Lohm~m. S.W., !972, Gwtmd-wa.ter hydr'<1ulks: U,S. Gwlngica! Sm-vey Pmfessk,na! Paper 7(m, 7{) p.
l\Jasliu, fvLL., l987, Reghmal and local !en..or comp!>nen.ts t>f a fr.acturedcarbona!e ;~quifer: in Farmer, LW.., D.aeme:n, JJ.K.. Desai,C.S., Gla~:?<. C. E., und:f'.ktmHUL, SJ~., ed.~., :Proceecih:g& o:ft!m 2f(h US Syn1pos:imn on mck mechantcs, lh!iver'>iiy of Arizona, June 29--July L l9S7. p. 441-452.
Masha, M.L, and Prowell, D.C., 1990. Efkct.:.; oi"fat!lb on f1uid ibw a11d chloride <:onlaminati<>n in a <:arb<mal<: aquifer syskm: .k>mnal ofHydmlogy, v. U 5, nos, 1-4. p. 149.
M1ltthews, S.L, and KrauM:. R..E., 19M, Hydmgeologk datu fwm !ht~ U.S. Ge(;Jogical Sarvey test wells near Waycn)ss, \VaJe County, Georgia: lLS. Ge-0iogka1 St!rvey WaterReS~>tln;e~ fnw;)Stigati<ms Repor! S3A204, 29 p.
McCo!l:um. M.L and Com~t&, H.R, 1964, Relation ofsa!H;,va.ter encroachmew to !he m~jor ~~ql<ifer >~mH%, Savannah area, Geerg:ia a11d South Carolina: U.S. Geologi<:al Survey WaterSupply Parwr 16! :t~D, 26 p,
MeCcm:neJl,JB., andH>l.cke, CM., !993, Hydroge(!logy, water qu.ah!y, and water-res~>mces development potential of !he tipper Floridan aquifer in the Viklosta ana, si)utlH::cntral Georgia: U.S. Geological. Survey Water-H.esources rnve:->tigatiml$ Report 93-4044,. 44 p.
Mcfadden, S,S., Hetrit:;k, tH., Kdla:n1, M.F,, RGlknb.ack S.A. and Huddld<lun, P.F., 1986, Gec~.)k>gic data of the Gulf Trough area, Gemgia: Genrgia Goologk Survey Information Cin;ular 56, 345 p.
Meyer. F,W,, 1962, Renmnai.:!':o;ance {)f the geology and gnmnd~ water n<.~;ounx:$ of Co!umbia Coun!y, Flmida; Florida Gedogicai Survey Repmt of Investigations No. 30, 74 p.
l'>Jeyer, F.W., 1974. Evaluation ofthe hydrad1<: dm:r;l.ck!'istics of a deep artesian aquifer from natural water-kvel flm)1uati0l!s, Miami, Florida: Florida Bureau i)f Geology Rep~ni of lnvestigati<.>.us 75, 32 p.
JviiUer, .LA., 19:?,{~, Hydtogedog1<: framework Bfthe Floridan aquifer system m Fbrid.a and in pans of Georgia, Ah~ham.a, and South CamH:na: U 5. Ge~;!log;ical Survey Pmfessi<mal Paper 1403-B, 9! p.
Milkr, J.A., Hughes, GJI., Hull, R.W., Ve.cchioli, John. and Seaber, P.R., ! 978-, Impact of phosphate n:umng on !he hydmiogy of(.)s,~~eola N>l.tional Fo:rc.:>1:, Ht}dda: U-3. Ge!:>log:!<:a} Survey Water-Resomws Inve:->tigati!>n,~ Report 786, 1S9 p,
:r~1~.:~ore. Jerry, Benson, SJ\1, Snipes, D.S., Daggett, .k!}m, James, April. Kroening. David. Price, Sard.h, Prke, '</an, Jr., and Temples, Thonm..~, ! 993, Ch.ara<:terizahon d' aquifer properties in Coastat Plain sediments in H1.!rke C\mnty, Georgia: Southea,:;tern Sectiol1 Meeting Geologkal Sodety of Amenca, Man;h ~993, Abstracts with Program.~., v.25, no. 4., p. 5l(
Neuman,$.?., and Withen;poon, P.A., 1969, Applit.abili!y 1A t.urrent thet)rie!S o:filo\v in }eaky :aqui:kr;;: WB:!er Resources Research. v. 5,nt~. 4,p. iH7-829.
Newc<>me, Roy, Jr., !993, Pumping tesH of the Ct~asta1 Plain aq_uifCn< in South Carolina: South Camlina \Vater Res;.>uv.x~ c~rruni~%i!)tl RepGri 174, 52 p.
26 Hydraulic Property of the Floridan Aquifer System
Newcome, Roy, Jr., 2000, Results of pumping tests in the Coastal Plain of South Carolina: South Carolina Department of Natural Resources Water-Resources Open-File Report 5, 26p.
Odum, J.K., Stephenson, W.J., Williams, R.A., Pratt, T.L., Toth, T.J., and Spechler, R.M., 1999, Shallow highresolution seismic-reflection imaging of karst structures within the Floridan aquifer system, northeastern florida: Journal of Environmental and Engineering Geophysics, v. 4, no. 4, p. 251-261.
Phelps, G .G., and Spechler, R.M., 1997, The relation between hydrogeology and water quality of the Lower Floridan aquifer in Duval County, Florida, and implications for monitoring saline water movement: U.S. Geological Survey Water-Resources Investigations Report 96-4242,58 p.
Price, Van, Jr., Fallaw, W.C., and McKinney, J.B., 1991, Geologic setting of the new production reactor reference site within the Savannah River Site (U): Aiken, S.C., Westinghouse Savannah River Company, report no. WRSC-RP-91-96--EHS..EM, 80 p.
ProweH, D.C., 1985, Index of faults of Cretaceous and Cenozoic age in the eastern United States: U.S. Geologica! Survey Miscellaneous Field Studies Map MF-1269.
Randolph, R.B., Krause, R.E., and Maslia, M.L., 1985, Comparison of aquifer characteristics derived from local and regional aquifer tests: Ground Water, v. 23, no. 38, p. 309-316.
Randolph, R.B., Pernik, Maribeth, and Garza, Reggina, 1991, Water-supply potential of the Fioridan aquifer system in the coastal area of Georgia-a digital model approach: Georgia Geologic Survey Bulletin 116, 30 p.
Ransom, Camille, Ill, and White, JJ., 1999, Potentiometric
surface of the Floridan aquifer system in southern South Carolina: South Carolina Dept. ofHealth and Environmental Control Bureau of Water Publication No. 02B-99, 1 sheeL Sever, C.W., 1969, Hydraulics of aquifers at Alapaha, Coolidge, Fitzgerald, Montezuma, and Thomasville, Georgia: Georgia Geologic Survey Information Circular 36, l6p. Sever, C.W., 1972, Ground-water resources and geology of Cook County, Georgia: U.S. Geological Survey Open-File Report, 40 p. Singh, U.P., Eichler, G.E., Sproul, C.R., and GarciaBengochea, J.I., 1983, Pump-testing the Boulder Zone, South Florida: American Society of Civil Engineering, Journal of the Hydraulics Division, v. 109, no. 8, p. 1152-1160. Smith, B.S., 1994, Saltwater movement in the Upper Floridan aquifer beneath Port Royal Sound, South Carolina; U.S. Geological Survey Water-Supply Paper 2421,40 p. Snipes, D.S., Benson, S.M., and Price, Van, Jr., l995a, Hydrologic properties ofaquifers in the central Savannah River area--Volume l: Clemson, S.C., Department of Geological Sciences, Clemson University, 353 p.
Snipes, D.S., Benson, S.M., and Price, Van, Jr., 1995b, Hydrologic properties of aquifers in the central Savannah River area-Volume 2: Clemson, S.C., Department of Geological Sciences, Clemson University, 204 p.
Spechler, R.M., 1994, Saltwater intrusion and quality of water in the Floridan aquifer system, Northeastern Florida: U.S. Geological Survey Water-Resources Investigations Report 92.4174,76 p.
Spechler, R.M., 2001, The relation between structure and saltwater intrusion in the Floridan aquifer system, northeastern Florida: in U.S. Geological Survey Karst Interest Group Proceedings, St. Petersburg, Florida, Feb. 1316, 2001, p. 25-29.
Spechler, R.M., and Wilson, W.L., 1997, Stratigraphy and hydrogeology of a submarine collapse structure on the continental shelf, northeastern Florida: in Proceedings of Sixth Multidisciplinary Conference on Sinkholes, Springfield, Missouri, April6--9, 1997, p. 61-66.
SzeH, G.P., 1993, Aquifer characteristics in the St. Johns River Water Management District, Florida: St Jor..ns River Water Management District Technical. Publication SJ93-1, 495 p.
Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration ofdischarge of a well using groundwater storage: Transactions American Geophysical Union, v. 16, part 2, p. 519-524.
Vincent, H.R., 1982, Geohydrology ofthe Jacksonian aquifer in central and east-central Georgia: Georgia Geologic Survey Hydrologic Atlas 8, 3 sheets.
Wait, R.L., 1965, Geology and occurrence of fresh and brackish ground water in Glynn County, Georgia: U.S. Geological Survey Water-Supply Paper 1613-E, 94 p.
Wait, R.L., and Davis, M.E., 1986, Configuration and hydrology ofthe pre-Cretaceous rocks underlying the Southeastern Coastal Plain aquifer system: U.S. Geological Survey Water-Resources Investigations Report 86-4010, 1 sheet, scale 1:2,000,000.
Wait, R.L., and Gregg, D.O., 1973, Hydrology and chloride contamination of the principal artesian aquifer in Glynn County, Georgia: Georgia Department ofNatural Resources Hydrologic Report, 93 p.
Warner, Debbie, and Aulenbach, B.T., 1999, Hydraulic characteristics of the Upper Floridan aquifer, Savannah and St Marys, Georgia: Georgia Geologic Survey Information Circular 105, 23 p.
Warren, M.A., 1944, Artesian water in southeastern Georgia: Georgia Geologic Survey Bulletin No. 49, 140 p.
Weems, R.E., and Edwards, L.E., 2001, Geology of Oligocene, Miocene, and younger deposits in the coastal area ofGeorgia: Georgia Geologic Survey Bulletin 131, 124 p.
Whiting, N.M., and Park, A.D., 1990, Preliminary investigation ofwater-level declines in wells near Estill, Hampton County, South Carolina, Spring, 1990: South Carolina Water Resources Commission Report No. 3 7, 18 p.
.-.-.-.........-...................._. ..............:::::::::::::::::::::::::::::::-...
APPENDIX A
Table A1. Transmissivi-ty and storage cootfidoot of the Vpper and Urwe.r Floridan aquifers and eqlJ1vatent clastic units. c<Jast;~! Georgia
and adjacent parts ot Soutn Carolina and Florida [tl:, !(>P<~ ft'id. !iz;-~; squared JX<t ;hy: %, p;:;mmt; do., d~tl.(>; ft!J/fl., fr,ot'<hy/foot; ''. ;.k:gn~c>.: ', mi:mk~~; ", se<:<mds; SJWMD, ~k John:; Rivt.-r Wattr l\-1;mag~lrli~nt !:hstrid; S, storag;:;; T, lr-<ill$lY~i:~~.;ivhy;
USGS. l.LS. Ge(>h)gka1 Su.rvey; SC1JNR, Sonth CavJHna Depanrw;:nt ;>f Natm-al f{es<l:m:~;, Stak: FL Fh}rid~s:. Gt\ Ge<.)rgb; SC, S;luth Clmh.na. lvh::th<)d: NL non!c:1ky w;JUifcr anB!y~;is; L, k>lky <:qnif<.<t artr>!ysis; SC, tmr..smi;;sidty bW><ld.Nl ~p.::dfk c;rpa.:i!y; SL, ~lraight Hne an!l!ytical solution; V, v~n >k:::: KMnp ana1y:>i~ of(i%ilb!ing How {Km;;emm; and(\;;) Iht;.<::r, l1N4}; {7), lHJ;JJyti"al
nwthtv.J not dtecl. Hydrologic on.U: Ul\ Upper Ftoridl.ln <lql!iter:, LF, hw,w F!nridan <l.<jllH~or; UfJY, Upp<.'t and L<)w~r rtorkbn ;Jql:i!i;rs~ hydml<)gi~:: \.mit i?n:Jm<::d in ps:;.;>;:nth~~~ l(fdkm<::~ <1 (;lac;!~"'
updip aquifi:.r o::-.quivabnt w ttm carbonat(~ Upper or l,.(,wer fbridan aquiters]
~--~---~-~~~~-~--
....,----~~--'"~-------
Below ~nd $Urlsce
---'--~---~~-"'"'
State County
Y/QH iclmitlf!er
Other identifier
~-~--~--~-~---
Fl..
B~>hx
Wdil
IW!;;~I C<.>m1!ji
Ent-.:xpnse Eas!
latitude
"Top of longitude open
in~arval
6-otlam
a10JMn !nter\1<3!
Tt>SM
mi$slvlty {ft2Jcl}
Storag~
coefnc!em
{ft)
(ftJ
4Hl} o.n4 ----------~-~~---
31Y!T5Y ll2"(>5'!W
6~{}
! 5 ,tR.'l')
Me1hoo
Refute-nee
Hy~ro!ogN::
unit
twtrulf~$
.... ...___ -~--"~--~--'~-
,--~,
NL P. Pr('s!cy,
':)JWMI.\ wr:i"i.ti.'U
Uf
s" S "' ().flS .if fC<'\lV<~lV diltl <_.;;;;::<L
T .,. 14,0.:.)0 H2id, 0/ll ihr
C(.)((tffit..:..n,~ l.UH2
obs<:~v:lti;m wdl
<l<.>.
C!.1lwribi;s J{) ll i)j:(iji:( !..ai-:<:Chy WeH
.10'' ll'l I)"
.;."'. R-'->~.-,."-'>"~1('1.:;,~
!57
'N~~. 1
2!5 3i>. UOO
.ntm~
L
Mey<:r (l%~~)
df!.
A!sn c:kd in i:ln~h :md J;_>hni:<>)tl
{19%)
di.>.
i.kl.
J\)!'{.1!-0tl
ONF#2.
l'1midan
30"19'J4" ~2"35'\W
!60
262 :H,OOO
;k Duval
D-!00: (>JOtl
302!\lT' S!"4i'W'"
Uti:'<
4,()0\)
.f!f.~}:)7
do Mi1 kt <md ,-,:h;.<ts
(:1~::>7&}
~c Phelps and Sp;e<:h!~ (19'!7 l
d<)
PELF"
T ;,f4,5i)i> !'!:2/d \1-'l-s<m pmr1~d
at 3 1:)w~~r ~a!).:
dt>.
dn.
J)<>:~A: (>J(I.'}
3H0 2.t '2:~ Bi.''4J'"i(j"'
!3.>6
15,(J(Jij
di.>
d<).
rl<.>
do.
df:~.
D-226; OtW)J
-~<~<-25'27~ 8l"Yl'37"'
!.296 fG.OOO
~]J)
do.
dn
&.r.
;h.
do.
d::>.
d:..~.
de.
i>-1:Jt!;Otllil
30~'25;31 1(
fH~39<25(o
Ull 27,000
D22D;H7N 3fY' ~~?37" 8!'"4?'!4"
553
!,:wn ::w,onn
!),5}/<.; )(11}3
3!i0 !8'4()'" 3.l''"~19lJ_~~i'
UM,
5,i:ti.i{l
d<),
do,
>k.
J)i
d.;'J
dn.
d<.).
T (<f24,fJOi.l wh<'U n\'d pump<xl
:l! n $ lighlly higher l'"a<x l.>ut f!lr
a i:!v~ner time p;;:r_i.<.xl
de.
T m''il" <)f 1;,s,nno k< J9,GGfl n1:d;
Yillu~ p!t~;;entd is ihnl d:<il.lincd
l\lr tJ;_,, :onw:s! r<umping p<:.rbi
do,
T r:JJs.g.e nf 4.2Jlli v.~ 5. ann l~"'<k
value pr<::><'!lh':d is fuM nbi.sincd
hm k>nge:<l f".!tl<pi.,-,_g pcri<.<il
do.
do
do.
do.
do.
dn.
d::>.
do.
D-l6il:<'i3()2
u-2@; znn:l
t2 _;.o-~:21' ~ 30~2 l'221)
(J.J"4!'(}()x
~H~4f2z)=
U2\l 1,362
2Ji)(l I4.iKK!
!J-lf<l; l}}Ol
3i!"2l''Yf" ~!!'"4! '23''
!J{)i;}
21,000
570f>
!fi:<:rw<.><.>d .~
JiY{ l4<33~
~1~'32('26')
5!9
970 2G,Ol/l
.ili.lti
:ln.
df,_
do
d,~<.
<i<),
d~).
SL
P. F'"fe~~!ey,
SJWMD. written
wmmun., 2(liJ?:
do.
do.
f ;<!' l2,()0i.l 1/;;J whn< pumpd
'~~ :< hi>?h<'lr-"t"' but l'.lr ~ :;h('!icr
time rv:;ti<.xl
d::>,
i
!.'F
S :-/~1.}ne f~om (fh~~::p;ati(>H w.._~_u
(T "'25JJOU f/:J in
~
~
GbS<':'.vMion well)
>
!t
Table A-1. Transmissivity and storage coefficient of the Upper and lower Floridan aquifers and equivalent clastic units, coastal Georgia
and adjacent parts of South Carolina and Florida--Continued
[ft,
foot;
ft2/d,
feet
squared
per
day;%,
percent;
do.,
ditto;
ft!d/ft,
foot/day/foot;
0 ,
degrees;',
minutes;
,
seconds;
SJWMD,
St.
Johns
River
Water
Management
District;
S,
storage;
T,
transmissivity;
USGS, U.S. Geological Survey; SCDNR, South Carolina Department of Natural Resources. State: FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, nonlcaky aquifer analysis; L, leaky
aquifer analysis; SC, transmissivity based on specific capacity; SL, straight line analytical solution; V, van der Kamp analysis of oscillating flow (Kruscman and de Ritter, 1994); (?),analytical
method not cited. Hydrologic unit: UF, Upper Floridan aquifer; LF, LO\"CI' Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit enclosed in parentheses indicates a clastic
updip aquifer equivalent to the carbonate Upper or Lower Floridan aquifers]
State County
~-----------------
FL Duval
Well identifier
Other Identifier
---------
5901
Ridenour
--------~-------
Latitude
--------------------
Below land surface
Top of
-----
Bottom
Trans
longitude open of open mlssivl1y
Interval Interval {ft21d)
----------~----
30"19'40" 81"29'30"
{ft)
(ft}
----------.-----...
430
900
21,000
~'--~---
Storage coefficient
Method
Reference
-------
0.0003
._._ _______________
SL P, Presley,
SJWMD, written commun., 2002
-------------~-
----------~----~----.-
Hydrologic unit
Remarks
------"'
---------~----------
UF T from recovery analysis, S from
observation well; leaky aquifer
analysis at observation well yields T of24,000 t\2/d and
Sof0.0003
do.
do.
5903
Ridenour
30"19'34" 8!"29'25" 425
920 18,000
.0003
do.
do,
do . T from drawdown analysis at pumping well, S from observation well; leaky aquifer analysis yields T of 17,000 Wid
do.
do.
Duvall
D-650; 5304 3017'25# 81"30'50" 461
1,276 50,000
sc Phelps and
Spechler ( 1997)
UF,LF0
do.
do.
Duval!O D857; 5403
3020'05" 81"35'45"
569
1,104
7,000
do.
do.
do.
T of !0,000 ft2/d when pumped at
a lower rate
do.
do.
Duvall! D-479; 5402
3020'07" 81"35'32"
606
1,350 50,000
do.
do,
do,
T range of27,000 to 61,000 ft2/d;
value presented is that obtained
from the longest pumping period
(11)
0
=";!.
;!!..
l
'Cm
i
-a.
::11' CD
:!J
C3
S:
=Ill
>
=.c0;
.C.l.l
(I)
1 a
do.
do.
Duvall2 D-673; 5404 .J0020'13" 81 "35'38" 578
814 190,000
do.
do.
Uf
do.
do.
Duva113
D-1323
3020'45" 81 "32'31"
580
1,170 40,000
do.
do.
Duvall4 D-46A;0305 30"21'30" 81"41'18" 530
1,280
9,000
do.
do.
Uf,Lf'! 3 values presented ranging from
21,000 to 170,000 W/d;
intetmediate value presented
do.
do.
do.
T of 13,000 ft2/d when pumped at
a lower rate for a (slightly)
longer time period
do.
do.
Duvall5 D-227;0604 30"25'14" 8139'37"
570
1,257 34,000
do.
do.
Ouvall6 D-329; 0602
30"25'38" 81 39'25"
545
1,210 24,000
do.
do.
do.
do.
do.
do.
T of 21 ,000 ft2/d when pumped
for a shorter duration at a
slightly lower pumping rate
do.
do.
Duval2 D-3825; 5305 30"17'43" 81"30'35" 440
l,o93 84,000
do.
do.
do.
Tabl$ A1. TransmissiVity and stoMge co~ttldent ofth~ Upper anti Low~r f!orid<m <lqui!Ms and eq!li\lalen! dalOctic units, wat!af Geort.~ia
and adjacent parts of South Carolina and F!or!da-Con!inued {H, toot; ff/<1, teet iltJll<l1W }X~f day;<}~, p(~rcent; <h, ditt<.); ft/dift. fnot!dayif<)Ht; '", d~gre~s; ', minuks; '', sec<mds: SJWMD, St- J<)lms Riwf Wat~'l Man;;gcm<::nt DistrictS, ;;!<>t:lg<:; T, transrr!issivity;
USGS, U.S. Gm.!ogka! Stirvey; SCUNR, So\~th Carolina Departraent of Narum! Resources. State: FL, Florida; GA, Ge:.xgia; SC, South C1rohw;. ~<kt!Hxl: NL, m>nl~aky aquif.:r amly~.is; L. leaky
aquifi::r analysls, SC, tramanissivi;y ba;;;;.'ll <m ~pcdfk (:armdty; SL, straight liM ana!ytk\11 :oluth:m: V, vt:n de Kmnp ar.a!y~:k of osdilating thw (Kn.!~<:tmm and d~ RiHcr, l W4l., ('?). >lna\ytitill
m<cihod not cik'd. Hydrologic unit: UF, Up}X'r fbtidan <H~~tilh; LF, L<)W{~f Fls>d<lan aquif(~r~ J.lFJ.F. Lp~wr and LoW(..'"!' Fkidan aquifers~ hydmh>gi(: mrit endm~d in par<:.nth<ses indi.:a:e" :l d<;.>;;)c
___________ apdip a<!<Jll>;;r equivalent 1o the <:atlxmili.e Up1x~r <Jf Lowcr Floridan aquiiersl
-------------------..............
........-.....................................................,,
~, ..............................
Se<lt;.lW l~n{j ~Urf'-'c~
--~~--~----~~~-
State Courdy
W~ll
!clernif!er
O!h~r
Identifier
Lalliude
-~--~--- .............~-------~
TQPof S<tttom Trams LMg!tude open of open mlsei\41y
lnwrv&! !mer\1"81 (ft2fd}
S!orJSge
~()~fflciel'H
Method
RJefert!n<:n
Hydro!ogh; <.mit
Remarks
FL Duvl.ll
-------~--............................
fA:ssJ 3
D- 213; .~J<.l l
3()'' 11'4-3 fn'\~li'J9"
{ff) 420
(ft} U2S
J9.0()(1
....................................
sc Phdp~; and
Spt'<:hks (.!997)
.. .... ~ .......................... -.--~----
t.:F,LF''
Based <>...., 4 h<!'.<l"" p<lmping; r (<f JtJ,()IX! f1:2id wlwn i>umr<>~:l
for O.S hm.H.'S, :Ji. 3 high"r
p<.Jm!>ing 1ate
ik:<.
do.
0UV>ll4
D-649. 52fJJ
30~1'1'52"
~i\).36'0ri'
5:>4
l,l)()5
l4,llOU
(h
de.
!)uvl.ll5
tl665; ~W.>
Jfr'l7'5R" ~!1"30'}<}''
4!7
1,!~5
.2,0()()
;J.-:.
d<.'.
d:.<.
d:).
dn.
d~~.
ds:..
dn.
r><.w~J 6
D--198: 50(!1
30-,la''N" 1>1''39'?.!''
5~1.
; ..:::f)7 }0.<Yl0
:lH.
d:).
D<.J.v3l. 'l
~)..20M; .55U1
3ti0 l 8'40'' ~! 0 }S'Yl"
,f!'?
~.~!52
l4JKtl
;J,;,
do.
DuYa! S
0.-2@5: 150!
:}()").!>'4/i'' ~!"39'()3"
321
!,17<}
L{~~i)(K}
do.
do.
Duval '1
D-113: 0?\H
.'Ji.l"l9':l.iJ'' S1=-47~}6x
553
l/00 w.nno
d<~.
rh
blstWdl. JEA Bnmdy
;)00 !9'21" B;.~s6!4r'
5.)6
Btr>n~h
SJ1 ! 5,0ti{)
do.
de).
do.
d(>.
sc
&,.
do.
do.
NL
.P. P.rf:::;l:::-_:~,
SJWMD, written
-:.x,..rnrfRff} ... /.He:.:
(!J.)
d<.).
T or l:\f.!UO tt"-'d repm1d wh<'r:
pumpt.>.l "' ;~ lower s;;.<.t.'
.,
dn.
1 nf 2 <. pon fi.':'d. .<~'P''ned wl1o::'J)
_ptunpcd st '' ls;w~s mt<':
de.
UF
T fr<.>m <>bservstirm wd.l (m:. ;
given ll:>t- pn~d<l>;tbn well)-;
;>.<.X~nnd (>h~.<~rl!ati<.>.:< wd! vidd~d
aT of l&j.)(){) !f;d
~
do-.
do.
MSO! Cummunity BaH 3WIY>'02 ~ l "1ii'fJ4''
46{1
6.24
9,i.HO
i.Uln
r-.il..: ''}
dn.
<.b
T ?<. S vahJ~':$ hern :,:h~..f:t~~st~o.n
wel1 {M 5{!3 }: kw T <'il..lm
"'n'~"'s pal'tiill penctratiHn d
the Vpp::r Fhx.idz.:.< U)<<ifer
d(>,
d\).
M%2
d!l.
W''ll!l'S':l" ii!'':"l.Wf!S"
46()
%0 !1,(}00
.002
Nl
(~).
<io
T &. ~;; li>:-:m <)OO<'tV>lHon wd1; no .
T pn>'v<dv.l f<:>f pumr>iHJ~ <wl.L
~ln~l~y:;i& tnetho:d ~~.hed ;~:;: . \: arve
mllkhing"
do.
di>.
MW.>
di>.
0!-iYO~'@" 8!''3/i'tlT'
4.57
{)25
~~G(;/.tflii
.iJ(J()i/!
SL
d;;.
UF.!. F'' T &. S Y<<!uc~ <>Hai.ncd limn
~
<>l>servstlN1 wd! (M304};
"g
ml<h!i<.>;o;.! nh~~n-;<tiafi Vtdi
yi,ild~ smaU;,;r T (67,01.'W Jl:dl
ax
df~.
do.
M5n5
c.~).
:>WH9'\W a1''?<!l'4l "
41!2
uoo
jt),()()(l
JJ("-)15
do.
d(>,
d<.).
l &. S flmn observatb!! wdl;
>
Y .. 7.4..(JOU r:<:<'l & S ''"' OJ><XKU:l
w;ing Tb~i> am:~y;:i~. & r ..
.t..:..<,
s 25,1/f><) 11:':'::1 & ,~ i)(>::l("!()2
""'mg H>lm.ush ;millyc;l:;
Table A~1. Transmissivity and storage coefficient of the Upper and Lower Floridan aquifers and equivalent clastic units, coastal Georgia
w
and adjacent parts of South Carolina and Florlda........Continued
N
[ft,
foot;
ft2/d,
feet
squared
per
day;%,
percent;
do.,
ditto;
ft/d/ft,
foot/day/foot;
0 ,
degrees;',
minutes;
,
seconds;
SJWMD,
St.
Johns
River
Water
Management
District;
S,
storage;
T,
transmissivity;
USGS, U.S. Geological Survey; SCDNR, South Carolina Department of Natural Resources. State: FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, nonleaky aquifer analysis; L, leaky
< =
aquifer analysis; SC, transmissivity based on specific capacity; SL, straight line analytical solution; V, van der Kamp analysis of oscillating flow (Krusernan and de Ritter, l994); (?), analytical method not cited. Hydrologic unit: UF, Upper Floridan aquifer; LF, Lower Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit endose'-<1 in parentheses indicates a clastic
;G=..
updip aquifer equivalent to the carbonate Upper or Lower Floridan aquifers]
ir
-----~-
State County
---------FL Duval
---~
----
-----
-------
-----------------
--------
---------
-..--------------
------- "0"
Well identifier
Other Identifier
Latitude
Below land surface
Top of
------
Bottom
Trans
Longitude open of open mlsslvlty
Interval interval (tr/d)
Storage coefficient
Method
Reference
Hydrologic unit
Remarks
a."tetoS
=!.
MR-2
____ ..... ---~-----_
JEA Monument
__________.. 3020'32" 8! 0 32'09"
(ft) - (ft)
565
807
'"'------------
15,000
0.0005
--~--------
NL P. Presley,
UF------------r--f--r-om
re<:overy
s ..... -------~-
analysis, from
f
"0 "
Road
SJWMD, written
observation well; additional
m:::~..
commun., 2002
observation well yields T =
24,000 rtlrd & s = 0.0005 using
leaky aquifer analytical solution
i=Cll
do.
do.
PW-1 Anheuser-Busch 3026'09" 8138'4~"
600
908 9,400
do.
do.
do.
...f T'" 8,300 ft2/d for recovery well,
using leaky aquifer solution. T for production wdt is recovery T, dmwdown T~9.200 ft2/d using Theim method
~
I
do.
do.
PW-2
Bacardi
3027'42" 81"38'35"
620
1,100 ll,OOO
.02
do.
Beverages
do.
UF,LFa T ""8,400 ft2/d if recovery data
utilized; S obtained from obser
vation well (PW-l; T also of
11,000 rtl!d). Leaky aquifer
solution yields very high T value at observation well (!56,000 fl2/d)
do.
do.
Well15 Jacksonville 3017'26" 81 23'59" 400
900 20,000
.001
do.
do.
Beach
UF T from recovery analysis at pumping wdl, S fium observation well, which also yielded aT of 32,000 ft2/d
do.
do.
Well2 JEA San Pablo 3016'49" 8! 0 25'49"
347
835 20,000
.0003
NL(?)
do.
do.
Drawdown & recovery T from
pumping well close; Tat
observation well 22,000 ftlld;
method cited as "curve
matching"
do.
do.
Well2 JEA Brierwood 30"15'08" 8136'42"
514
950 13,000
.002
SL
do.
do.
S value from observation well
(T ~ 14,000 ft2/d at observation
well).
do.
do.
Well3
do.
30"15'14" 8! "36'49"
514
1,100 22,000
.0005
do.
do.
Uf,LF" T'" 15000 if recovery analysis
utilized; S from observation well
(T"' 18,000 ft21d)
do.
do.
We11580l JEA Southeast 3015'41" 8127'13" 353
875 26,000
.0005
L
do.
Regional
UF T & S values from observation
well
Table JVt Transmissivity and stcraw,;l coeffiCient o1 ~he Upper and Lower Floridan aqu~fe:rs and equiva!~nt dastlc units, coasta! Georg~~t
and adja>~eni parts of So!..rth C<3J:>Hna and FJurida--Contim;1;:d [ft. f~Xll; ft 2!;i, k'et squaredpt~day; %, pt::rcem; do., ditto~ ftiJ!ft, fimt!d;ryifont; c, degrees;'. minutt:&; ",~~~-~on&>; SJV/r>..1D, St. Johns Riwr Wm~~r M:mag<:'!lKHi D!Arkt S. ;;!m-:;gc; T, ii"ansmi.~sivily; USGS. U.S. Gt:nh:sgi(~a! Survey; SCDNlt S0uth Ctm:>llna De;:mli:mcr:.t nfNatuml R{~sotir<:~s Stak~: FL Fkll'ida; GA, Gc;xgia; SC, Smtth Car<:>tina. Mdhml: NL. 1wnkuky :Kltdt:r ana!y:;,i;.;; L, kd;y Jquifet analysis; SC, ;.ransmi~;sivity hasecl on ;;pedlic <:apady; SL, :.;tra!ght line ~malytical sG!utk~n; V, van ~kr Kamp aml\Si:> <::fN;dHatir:.g !1ow tKruscrmm (Jtld de R!H{:t. l9~H}; ('!}., analy;i<:a! nw!.lK~l no! <:i;ed. Hydw!ogk unit: UF, Up}X-r F!<,)tidun <l!Hifer; LF, Lower Fkwidan aq;der; UF . LF, Upf->0! and L<riN<:.r F!orid:ln aquilC{;.;; hydrologic unit ~nclnsed in p<;r:::H\hl:':'.::~. indk::::t<:.~: a :.:k:$tk
qxiip aquif~r C(JlJtvHkm tn tht: <.<nhmat~ Upper or Low~~r rloridafl aquilh"]
- - - ..---
-------------- ----------................
.....................................................--~------- ..................................~~---
Below !~nd $umc~
Stilte co~mty
Wei!
!~ntifier
Other
~dootifl~r
Top o~ Bottom Lat!tltde Longitude open atopen
____ ---------------- .................................
mlervai interval
(ft}
(ft)
................~--
FL
l)':.lV;'ij
\lieU A
Gilt<:' M~rii.irm~
30''.:W.Jl" 1ll'<H'27"
457
l,l 'ff
Tnms
MI$Siv!ty {~Jcl)
Stora~
co&ffldent
Me!hod
R~fere-nee-
lHJ,UOO
,-,-,-.-.-..o..-----~
(1.()2
L
V Fn~sley,
SJWMD, "'>"'itk~n
C<)nl!!lUn.- !(1()2
Hydrologic unit
R~mt~tk$
.,._. . . . . . . . . . . . . . . . . . . . . . . . . .. .
ur.!.. f' T & S h<.>m nh~<~v,t!"i::<n wd!;
;ldditiN1a1 h:;<:f;;;;_inn -wd l
yJdd;, T of 65/KKi 1fi::l rmd
S l'f () i_iiXH ~~)
dn.
do
Wd! D!O! JEA Sh~i:fidd
~~1)02S'04" 8!"34'22'"
500
75U 26/100
.OOl
dt>.
\'1l!age
do.
d<)
WeUH
Gat<: M'lritim~~
311"24'34" !l.l'"~H'3Y"
4SO
l.04i?. 24,000
.oo;:)4
SL
d<<.
!.f{'
T N(. S fron: ~:(h?~f.:r-vadrm wen
;k, .
t.ll',Lf" S v,,]!l<;; fr;,m l>bt>:tv~ttif>n wdl
s {ali:o <.>!' (l. ()(J4 ;li. acditi;;mJ
<ib:<erv:::ion well}; T';~ lkm
'.)h;<:rv;<,\it)ll ;>.dl;; of 62.iXW ft?i:J
a<t<! 1oJ)r< a\:i
do.
~J.o
W~-st Wdl JEA l3!;;.ndy
~>U'' l9'2(i" !$!"56'44'"
533
~ ,265 75JXI\l
l.kr.:.h
<.k>. Hunilwn IJU4:l600?s PCS f'rP.<:<. Swit1 JtP2 rf)~.f:( S/.''51.'5!"
,~.
~ .t j
Cre-r:k Ch~~m.
i:<Zl) H'U/l(li)
&.l. Nas:sms .BDN20
Vnmmv."i
3WY;>\~9'' tWJl'Zi/'
;.)hserv3tk>n wdl I!!
Na;;:;mu (\mnly
567 l7H. Offll
<k'.
;J;;.
N;:;;;s:m I Fn-.d!P2timl wen 3(J>J<tJY' ~1"/.i:<':-rf"
50
~ .(YiH
)(},{)(}{}
.W39J5Gill.2-S37f!l
.!)fll
002
i}i}(l~~
SLC'l
).;_(}
do
Nu aualytko;;.l m;,t{w;J ::ited
Nl. Ceryak :me otb<.-::-.o,
ur
(!9iU}
<..lf}. W:ml<;;;a<::.d
~.kr
At,b::badl i l'i99)
SL S:edl i !9'iJ). ,,,~,,
P. l\-,sley, wr(U>:u
'~t~rnnmn.., .tOD2
<h
Oh~<~-vat:cm wd! li.<r :lqt:il~~ h~t;
additinnal f.;h:<etc<ttkn ~vcH
y.:e.lds T " Jl ,(~)H H1.:<! &
S ~ U.Unt14
;);)
do.
'{0-l
JEA 'l'ub:
R;~gimlill
JtPTr2.2:' ?sl"~~l'(ll ,.
4</0
<).(P:)
17.00()
.{(fi}J
NL F p,,,siey.
SJRWMD, wd!len <:mnm1m .
<b .
T lh>m rc<.'cvery ;mil!yt;i;: at
p\:r~lpi_:~g we!L ~ ii ;.>m
~hfrc::-vad;.J:n v..-~;;f! {leaky c:quH~-::r
2fli)/.
;m;l!Vt>i::, whkh vidd& a T cf
<<?J;nr; n2.:(k ,
~
'i
:z
x~
>
w
~
Table A-1. Transmissivity and storage coefficient of the Upper and Lower Floridan aquifers and equivalent clastic units, coastal Georgia
(>)
and adjacent parts of South Carolina and Florida-continued
J;o
[ft, foot; ft2/d, feet squared per day;%, percent; do., ditto; ft!dlft, foot/day/foot; 0 , degrees;', minutes;", seconds; SJWMD, St. Johns River Water Management District; S, storage; T, transmissivity;
USGS, U.S. Geological Survey; SCDNR. South Carolina Department of Natural Resources. State: FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, nonleaky aquifer analysis; L, leaky <::1:
aquifer analysis; SC, transmissivity based on specific capacity; SL, straight line analytical solution; V, van dcr Kamp analysis of oscillating flow (Kruseman and de Ritter, 1994); (?), analytical method not cited. Hydrologic unit: UF, Upper Floridan aquifer; LF, Lower Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit enclosed in parentheses indicates a clastic updip aquifer equivalent to the carbonate Upper or Lower Floridan aquifers]
a;t:l.
c:r
State County
Well Identifier
GA Appling 27NOOI
... --.--------
Other
Identifier
latitude
.......... ....... ,..,
~----------~-----
Baxley, Ga.
3146'03"
__---------~----------
Below...,.l_a___n_"'d"'__s__u__r_f_a__c__e__
---------
Longitude
Top of open interval
Bottom of open Interval
Transmisslvlty Storage
(tr/d) coefficient
Method
(ft)
82"21'03"
500
(ft)
... --...~~-~----~ ----~-------------------------------------
764 25,000
sc
Reference Kellam and
--------~--------------------
Hydrologic unit
Remarks
-------------------------------
tJF
a"0
---
'aI..
=.a,.,
:r
CD "'1'1
Q
Gorday (1990)
t
do.
do.
27NOOJ City of Baxley 3146'41" 8221'04"
564
849 23,000
do.
do.
do.
:g::11
do.
do.
27N004 Filtered Rosin 31"46'12" 8219'54"
525
625
8,700
Product Company
do.
do.
do.
=~....
do.
do.
do.
do.
27P00l Georgia Power# I 3153'54" 8221'30"
455
27P002 Georgia Power 3155'44" 8220'32"
49{)
680 48,000 711 30,000
do.
do.
do.
do.
do.
do.
fn
!
Company, Hatch, 2
!!
do.
Bacon
26LOOI
City of Alma 3132'32" 82"28'00"
363
626 72,000
do.
do.
do.
do.
do.
26L004
Alma,Ga.,3
3132'39" 8229'03"
501
840 21,000
do.
do.
do.
do. Ben Hill l9MOOI
City of
3!0 42'56" 8315'41"
283
Fitzgt:iald D
612 20,000
do.
do.
do.
do.
do.
20M002
City of
3143'00" 8314'43"
260
825 16,000
0.003
NL Sever (1969)
do.
Fitzgerald D
do.
do.
20M003
City of
3! 043'03" 8314'42"
260
Fitzgerald D C
750 !3,000
sc Kellam and
do.
Gorday (1990)
do. Berrien
19H026 City of Naslwil!e 31"12'26" 8315'20"
265
#2
450 360,000
do.
do.
do.
do.
do.
!9K005 City of Enigma 3127'14" 8320'23"
386
620
1,700
do.
do.
do.
do.
do.
200009 City of Ray City 3104'22" 83"11'46"
200
350 360,000
#I
do.
do.
do.
do.
do.
20H003 City ofNashville 3112'34" 8313'52"
283
#4
485 360,000
do.
do.
do.
do.
do.
20K002 City of Alapaha 3122'56" 83"13'13"
368
do. Bleddey 19T006 Cochran 2 (new) 3222'07" 8320'24" 220
550 32,000 417 !5,000
SL Sever(i969)
sc Brook$ and others
(1985}
do.
T calculated from recovery
analysis
(LF)
Screcn intervals 220 ~235
(Jacksonian aquifer), 345-370,
380-385,395400 (Gordon
aquifer)
Table A-1. Tmnsmlsshrity aM storage coefficient of the Vpper >3!nd Lower F!o.idan aquifers >;ind equivalent c!a~;;tic units, C~;!<.):i';!a! Georgia
and adjact:.lnt p.:trts of Soutn Carolina and F!orida-Dontinued
[ft, ti:>Ot; H1,\t teet :;quar~d ptc'rdiw; %, perGent >lo,, ;litH>; fl:iuin, H)otAl3y/fo0t; '', <k~gn~~$; ',minute~.;'', S~iX>rHh; S.!V.'M!\ St. Johnc; Rivet W<:tk\l' Munagenw1:1 Distri;;;; \ o;l<>;<::ge; T. ;ran;;mi:<sivity:
USGS, t).$, <ko!ogkd Survey:. SCONR, Snuth (\!rr>lirw DermrtmetH ofNamml Resources. StMe. FL, Flnrid>l~ GA, Ge<flgia; SC Si>t~th Car<:>! ina. Method.: NL. nnnkaky ~qui fer armlysh; L knky
aq>lifer !lnaly,;i~;; SC, tmnsmis;;ivity ba~ed on s1wr:it1e .;~apB.dty; SL, stc>igh !inc analyti;:;a! :;o)mi<m~ V, van der Kump analys)s d. oseillatng How (Kn.l~enia.n :~nd d::l R!Her, I99'J.); (?), an:lly!ka!
mf.!hod not dted. Hydtn!ogk uni!: Ul\ Upp<~r Fl<!ndan :~ql<i:k:r; Lf, {A)Wef f\oris.ian iH,J~ti!'<ct; UF,LF, Upper and l..::w<cr F1or~d;m aquifer;;: hydrobgk unit en~:is>~cd in ra:emhci:Ci: indk;Ji:('~ a d&stk
updip aquifer ~-Jt1ivah:mt H>the eax-bm:a!e Upper ~Yt L,wr~r Fhxidan aquifbr~j
..................... -~--------------. .................~------~-----~---------- ,
~........
8e!ow land smfaee
- .............. ............................"'"....
.............................----"""""
SMe C<:lunty
w~u M~nt!fh~f
Other i<hmtifier
Top of
L&Hturl~ Lm-l~!Wd~ u~n
________ lnt~rYa! (ft} _.......................................................................................................
(~l..
Bty:l.<l
3~1'10() Ri;.:hmlmd Hill 3FH',B" 8!''!3'5')" U.Htl
LFlW
Bottom
otopen
int~rat
(fl:}
l)7:'i
Trams
m!$~~vity
(Wtd}
Storag-e ooeff!Cclent
M!!th<'3d
R&im-~mce
Hydro!o~lc
1.mit
iUUG
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~-----~~----
SL !klrt<.'l;;c;n '~nd Fall;:
LF
(20!/l)
R&.matk~
- ....................
J~~.
do.
35P1W RJ-::hrm,sld Hill '!. p~;4'4:>' 1WH1'5()"
.120
44()
71),(l(lil
UFT\V
d:J.
,};),
ur
~1~~- .Bu!lodJ
,,f J.HOW Ci;,y Srnu~slx>ro J2::2~f~~t 1H''46'46"
:}2(J
;? 2
%5
2,()(l()
sc
Kdh~m<~ml
dn.
Gor;Jay (! 99(!)
tit!.
dn.
31T024
Stateo;bsJl'<:>
T!"22'4fl" !l j_'')(l'4J"
.WS
(;;sf<::W-!1)' ~s {p.:..Y~ ~
f,,,")',!
4,3(lfi
SL UlGS flks
'.b.
dG.
do.
-~ rru:b
Statei.>:o.o
32"22'3()" 81 ''"~r(~l4 i X
405
6"Jt}
4,?!)()
f),~}i)(~
N!.
dG.
dn.
Gakwy!
(c>hsorvrui('!! j
do.
<.k>.
~~rmz;
Stw~soo-:<:.
32?2-:Z~~y<
~ ~ < 5{}~~~~ ~
420
58(}
5~6UO
.Gill!.~
d:::-.
d(\
::ln.
do
d.l
3iTf>28
Sta~;~slx)n;,
32'~{.1'J~l< fWSfl'Sl"
W3
540
~.Zl(lti
.t)IK>4
de>,
d~:.,
dn.
Gati~way&
(flbil<~tt'iltliln}
(h.
do.
32T<.lD
City ,-,f Btn;J~;Je!.
32.:.-.22'4.2'~
~1"39'44"
Yl2
# l
510
3~70f.':
sc Kel!amami
de.
<.k<rda;; <["}<XH
df>.
Hurk~
2WWO(i5 S:.."t~~th~~si. f}~'Jrgia 32~52'27'~ l<' 82t:l3 1 ~
434
f)(perim<.,nt;;l
St~tV.m (LN-An. i}
5)5
8)f)f:
,};), !'b:';;f;,;; and >Jl)l<'l>
(19tl,5)
<Ln
<j()
(k,
29YiliJ1
trhy Cod:t:ln, l
3:.~:{)YJe<
&2"1!3'54"
!!
421
.1,600
de>.
di.>
;);).
Open im.<'i'-al udude:; i;)w~:;r
prJri:it~n nfthf: }~1:..~r.3fH3.::3J.l aquifer
d(>.
d;),
29V<Xl4
"Pmd Dy;::. r'
32~\JTl)'' R1:;;{)4(32''
244
.%4
6,20(l
:h
do.
dn.
dr;.
<.kl.
)02022
USGS M'lkr"
:t~ =- J 3~-t~r:
J ~ ::.~2t44tj
~c)
lW
<'4f.!
f\~<!'ld TW-4
SL
F;,H;; ;md <Xht~:;:
{;q97J
{UF}
~
"W
d(>,
;Jx
')!ZOO<! (i;.::(;tgi~~ Power 3J=-nft46}: ~ J"4.'i'S9''
22~}
PbntVcgk
25!
6,<}(.!(!
sc Bm<.>k;; rmd ;;i.h~~;-s
(!.!')
(!()S5l
~
~
;('
(\~t~stru~t.ien~ S
>
,p ~"
Table A1. Transmissivity and storage coefficient of the Upper and Lower Floridan aquifers and equivalent clastic units, coastal Georgia
m
and adjacent parts of South Carolina and Florida-Continued
[ft,
foot;
ft2/d,
feet
squared
per
day;%,
percent;
do.,
ditto;
ft!dlft,
foot/day/foot;
0 ,
degrees;',
minutes;",
seconds;
SJWMD,
St.
Johns
River
Water
Management
District;
S,
storage;
T,
transmissivity;
USGS, U.S. Geological Survey; SCDNR, South Carolina Department of Natural Resources. State: FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, nonleaky aquifer analysis; L, leaky
.f
Q,
aquifer analysis; SC, transmissivity based on specific capacity; SL, straight line analytical solution; V, van der Kamp analysis of oscillating flow (Kruseman and de Ritter, 1994); (?),analytical
I""
method not cited. Hydrologic unit UF, Upper Floridan aquifer; LF, Lower Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit enclosed in parentheses indicates a clastic
!.
(;'
updip aquifer equivalent to the carbonate Upper or Lower Floridan aquifers]
'1:3
,. . , . ,. ,.........~----~~~-~---..~o.-------1.---
State County
Well Identifier
Other Identifier
Latitude
--------~----
Below land surtaee
longitude
Top of
open Interval
Bottom of open
Interval
Trans
mlsslvlty (ft21d)
Storage coefficient
-----------------------
Method Reference
Hydrologic unit
...... ...... ~
---~---..._._._,_
0""
"Q
;::t.
Remarks
Cll
~ ....
..................
(ft)
(ft)
GA
Burke
3!ZIIO GGS TR.92-6B 3310'44" 8147'09"
!80
200
180
NL Fails and others
(LF)
IIJ" <II>
----~---~
:.c.I.!
Thompson oak
do.
do.
32Y033 Brighams Landing 3305'48" 8139'11"
150
200
3,500
TW-3
do. Camden 3300!3 KraftJSt Marys 3044'01" 8132'30"
516
1,060 19,000
(1997)
iS:
SL
do.
SLa Warren ( 1944)
do.
tJF
Warren cites T fange from
=1':0
:==a.E.t.:
(Weill 55)
observation wells as 14,000- 24,000 ft2/d, analyzed by Theim
!t
ft
method
aC\1
do.
do.
330069 National Park 3043'13" 8133'00" 467
575 110,000
0.001
NL Warner and
do.
ScrviccCI
Aulenhach ( 1999)
do.
do.
330073 St Marys Deep 3044'06" 81 "33'05" 1,365
1,500 13,000
TW
SL Harrelson and Falls
LF
(2003)
do.
do.
33E007 Huntley Jiffey 30"45'12" 8134'36"
552
760 98,000
.002
(Davis)
NL Warner and
UF
Aulenbach ( 1999)
do.
do.
33E027 USN Kings Bay 3047'56" 813l'll"
555
990 130,000
.001
do.
do.
do.
TWI
do.
do.
33E039 USN Kings Bay 3047'49" 8! 0 33'53"
950
1,150 4.3,000
Observation 0 I
do. Krause and
LF
Randolph ( 1989}
do.
do.
33E040 USN Kings Bay 3047'49" 81"33'53" S60
Observation 02
do. Candler 29T010 City of Metter # 2 3223'16" 82"03'57"
386
South
750 43,000 616 17,000
.00006
do. Bush and Johnston
UF
(1988)
sc Kellam and
do.
Gorday(\990)
do.
do.
29TOII City of Metter # 2 32"24'21" 82"03'56"
321
North
540 83,000
do.
do.
do.
do. Chatham 36Q002 Union Camp 04 32"05'58" 81"07'47" 237
603 34,000
.0003
NL Counts and
do.
Donsky ( 1963)
do.
do.
36Q008 Layne-Atlantic 3205'30" 81"08'50"
250
406 32,000
.0006
do. Warner and
do.
Aulenbach ( 1999)
Tabl~ A1. TransmissivitV and storage coefficient of th$ Upper and Lower Floridan aquifers and equivalent c!asti<: units, (:oasta! Georgia
and adjacent parts of South CaroHna and Fiorida-Contim.1ed
fil~ fwt: ftc/d, k:~~t squar<Xl per day;%, per<X:-<1t; do., ditto; tVdift, t<x>t!day!fiXlt; "', d(~gr{~i~s: '., rni!lBWs; ", ~t:(:mXIi<; SJWMD, St. J<shns Ri~,;:- \V;Hcr M;.mag;::n.::!:t Di;:;.ri:<; S, storag"~; T, t.:<~n:;mi,;;;ivity;
USGS, VS Gcologk.al Slif>'(.')'; SCDNR, Snuth C;Jrolillil D{!f!<~rtnwu! ofNat:mti Rc;wurcc$. Si:lt~; fL, Fhxida; GA. G:::<orgia; SC Soulll Carblin<!. iVi<dlwd: NL. nnkaky iHpii:h andysi~; L h::aky
aquif~ aaalysis; SC tram;missiviiy hasd on spedfie ~!ap:.>dty; SL s<raight line analytical Si:>lt!tion; V, van dcr !(amp annlysi~ ofo;;;:iU;;ljag tl<)W (Knwem;J.n ;;nd de RiHcr. !9'clil-); C!). ~li-ul!yti,~al
nH.~th<~d not dt;;,'<1 Hydrdogic tulit UF, Upp~;:r Pbrid@ aquifer: LF. L\)w~~r Flvridan uquiii~~~ UF,LF. Upper ;md l..mwr Flmidan aquifers; hydmlngi<: unit t~ncbsed. in parcmhes('S indieak; a cla:>tic
:1pdip aqHikr equival!mt w the '-~af\XlllHtc Upper or iAN!(~< Floridan <lJ;{tdk'r(!
-------------------------------------------Below !;md s;urta.<le
----------------------
Stine C<t!.lnty
W~! !d(!!'lt!f!Qf
Other !cloot!f!er
latitu4),
---~~----------------------------
CA Chatham 36Q0:3(> H<Ot>:d!lS,!tJ~.. # :_ .Jt=fJ.5<t9('
longitude
Top <)f
~pen
in1it!t>o<al
&mom
of open Interval
Ttans-
mls;slv!ty {~/cl)
Storag~
s:;eeft}dent
Me-thod
Re-fereru:e
Hydrologic unit
R~marks
{ft)
(ft}
'------------------------------~ -------------"-------------------:--:--
81"'/}t)~)J M
25l
750
~HJKJO
_()(J!j4
NL C;>.m!> and
Ul'
(\"tunts. ~~nd Drm:::.ky aver::1gf:d &~x
f.!<:>J1$ky i l ':i6.l)
qdu;:;; Ji,)m \V:"rr<:ss 0944.)
~~0.
dn.
.~i$Q:BU fk<\v::d:. l'hnt~ti;m J2"tH'39' 8!"1:>"40''
7~j{j
: ,i.lt-:5
K,:wn
(H)
SL R. Faye, USOt;
J..F
m~inxl, wrilt<:'!>
;;.;>mm<m., 2002
<k
do.
36Q33l Bzrwkk l'l:lni;Ji.i<>n :qfli'Y~
wn
~!"1)'41)"
353
46\l 46_1)(>()
fl.<X"K!(!Q
NL
d(>.
{)F
do.
do
]NWW l'<~rt Wt)n!wordl, 3Y09"l8"' lll"M'50''
2.34
Ga. i
6sn A.nnn
Nu') (;(sums and
d')
D<m~;ky(l%3J
do.
::h
36RQ3'? Savannah L'l:J'. 1.2:~uw~rr t.J."'llt-:'4:?."
7.70
9!i. ;n,nw
.0()()2
NL
do.
do
Pt. W<":l'twurth
~k:.
'-~'
TIQiYHl U. ~. !\>>l<ll5<:tvk;;: 32"04'40'" 8 5 t~;f}51J X
274
693 ::W.<WO
,i}i}(i3
d<J.
dr;
;j;;_
02
d~}.
$)S.i
37QiJ16 Snn!"hcnl C<>as< :32'\W33" gl"f>4'27''
260
Lin~ R.Rdoekr,
5(f{!
4~\f!<}(}
.C~G(J?
:b.
\~=;,:n.:e:f and
do.
A~ll<:nbsch i l9'~'~)
do.
d(>,
37QOlii Am<:!ican Cyanide 32>(1.-f%"' lll"iH'47'"
205
65H
27.\:~Kl
#1
NL{?} Cm;;_us ;<ml
dn.
Donsky \ !4!\~ i
do
.
.J7QU4<i Savann2il. El~'ttic Jt.=t:.5(H l ~ 8.!"'()5'46"
2.10
l.nn:~
J4.(!()f)
& l'nw<~r C\>m!)-'lllY
Rl
NL\'1}
d{>.
d:,_
d~>~
&\
J7(>lR5 1-lut>lhis<:>n !.:;land ~~Y%11'" Sl"Hi/}i"
274
34A Jl.()OO
.00!
"!Wl
NL Wameraad
0<.).
AulCilhads (l '}'}t})
do
th
J/R(RH S3v:mm!h Wi!dht<: _;~~D~Y..Y4~~' f>l'"!)TU!)''
.1-i-:U
>.>"!! YU.K)O
Rdi_;~"'
<k
do
~j<)
;);;,
<.k>
Ji:<QllS U!:lNPS Cn;:bpnr 32"0 l'36" 1}()"'53'?.6"
f<UJXXJ
.nu.'l
;h
Cmmt~aHd
;k:.
f)<.)nsky i l 'A\~ )
>"1::1
:J.l.
Cnfi<:;:
~~3LOO~~ City ufr.J<.>ugla> 31'}3i}Jly, 1{2''59'55"
504
#4
721!. 7.iJfJ. Oi.iZl
~c
Kcll~HH and
\.ln.
Gtr:day { f99f~.l
"!=Sf
=-i:i3
~~r
:P<
I>! -->-1
Table A1. Transmissivity and storage coefficient of the Upper and Lower Floridan aquifers and equivalent clastic units, coastal Georgia
and adjacent parts of South Carolina and Florida--Continued
Co)
[ft,
foot;
JV/d,
feet
squared
per
day;%,
percent;
do.,
ditto;
ftfdlft,
foot/day/foot;
0 ,
degrees;',
minutes;
",
seconds;
SJWMD,
St.
Johns
River
Water
Management
District;
S,
storage;
T,
transmissivity;
01>
USGS, U.S. Geologica! Survey; SCDNR., South Carolina Department of Natural Resources. State; FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, nonieaky aquifer analysis; L, leaky
aquifer analysis; SC, transmissivity based on specific capacity; SL, straight line analytical solution; V, van der Kamp analysis of oscillating flow (Kruseman and de Ritter, 1994); (?),analytical
a::l:
method not cited. Hydrologic unit UF, Upper Floridan aquifer; LF, Lower Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit enclosed in parentheses indicates a clastic
;
updip aquifer equivalent to the carbonate Upper or Lower Floridan aquifers]
=5"
State County
Well Identifier
Other identifier
...........
GA Coffee
-~~~---
23L004 City ofDoug1as
latitude
Betow land surface ---
Top of Bottom longitude open of open
Interval Interval
-------
{ft)
(ft)
-----------
3132'16" 8251'20" 5!4
684
Trans
mlaslvlty (tt2/d)
Storage coefficient
.... -~---------------
600,000
Method
Reference
Hydrologic unit
sc----- Kellam and
--------
UF
Remarks
-~-----------
:v
Q
"0
a:..:t.l.
---
-eCll
Cll
c
(II
#5
Gorday ( 1990)
::!:!
Q
::1.
do.
Cook
l8GOI8 City ofCecil 3102'45" 83"23'40"
214
do.
do.
1811002 City of Adel # 3 3!008'33" 83"25'27"
231
308
6,700
386 15,000
SL Sever (1972}
do.
sc Kellam and
do.
=It
):It
do.
do.
l8H005 City of Adel # 1 3!.0 08'16" 832:5'!9" 213
375 :5,800
Gorday ( !990)
do.
do.
do.
=....&c::1:
(II
do.
do.
18HOI6
USGS Adel
3108'13" 8326'03"
207
1est Well
865 11,000
do.
do.
do.
<U3
! ;
do.
do.
18H033 City of Adel 3108'25" 8325'42" 207
393 210,000
.002
NL Sever (1972)
do.
do.
Doo!y
16S002
Unadill-<~ 3
3215'04" 8344'23'' 247
307
6,600
SL Faye and
(LF)
McFadden (1986)
do. Effingham 34R043
Dawes Silicia 32609'45" 81 "23'38"
320
Company
689 51,000
sc Kellam and
UF
Gorday (1990)
do.
do.
JST003 City of Springfield 3223'60" 8JOI9'l0" 180
400
6,200
1950
do.
do.
do.
do.
do.
36S004 Westwood Heights 3215'23" 81 13'36" 303 SID
565 30,000
do.
do.
do.
do.
do.
36S022 City of Rincon # 2 3217'22" 81"14'02" 281
500
2,800
do.
do.
do.
do.
do.
36S025 Ft. Howard Paper 32"19'36" 81"12'09" 280 Company# l
500 32,000
do.
do.
do.
do.
do.
36S026 Ft. Howard Paper nJ9'52" 8112'27" 280 Company# 2
520 !7,000
do.
do.
do.
do.
do.
36S027 H. Howard Paper 32"20'01" !WI2'21" 282 Company#3
500
5,000
do.
do.
do.
do. Evans 30ROOI City ofClaxton# 2 32"09'45" 8154'10" 401
701 37,000
do.
do.
do.
do.
do.
30R002 City ofClaxton 3209'45" 8154'47" 4.52
805 56,000
do.
do.
do.
do. Glascock 25Z003
Gibson,3
3313'35" 8236'04" 173
203
620
do. Brooks and others
(LF)
(1985)
Table A1, Transm!sslvt!y and storage coefficient of the Upper and Lo.ver Floridan aquilers and ~~quiv;:dent dastic units, coastal Georgia and adja~.xmt f>aris of South Caronna and F!orida~Continued jf:, ti.JOt: fl2fd, !i::t.":! squared per day;%, per~xnt; ~.k, ditto: f./d!fi, f;l<)!/day:foot '', ;kgrees; ', mimHes~ , secom.h.: SJ\.VMD, SL bhns Riv;;r W::t~~:.' M,m:~.g;;::r;~,iH Di:<trk:.; S. storag;"\ T, tnmsroi~~ivhy: USGS, US Gcologi<:.a! S1trwy; SCDNR, South Camhtu f}{~pmtmel~t of Natural ResQU!c<:::s. State: FL, n~)rkla: GA, Gmrgi8; SC, Soulh Caro!iml, Methml. NC nonkahy aquifer analysi.s; L leaky a>..jttifer analysis; SC, tr:m~missivhy h>;;;;.>j on specik (:ap:.dty: $L, ::traight lin<.:: >'ndytkal sduti;)n: V, van der Kamp analysis (f nscil)ating flow iKJu$eman aitd d~ Ritt(>, 1~li4'!; n), ;m:~.!ytkal mtr:h<)d nN dt<:d. Hydmlogk unit: tT, Upper fk'>'fidan aquik-t~ LF, Lower F)(;:idill! aqnifer: UF. LF, Up1~r and L<<>,<:::r F!,)ridc:n :.;<.JtJ!fer"; hydn>k>gi;..~ emit i;m+;::->~:d in p~rr~'ntht~s0s ir,dka!~~ a cbsti<:::
npdip a>:jdk.-t <:.':qHivaknt to the ~.~:~.dx)f:ii!e Upp<:r or Lo~i~r .Flotldan :Jqui!h;;j
State County
"u-r-.;
Gb;;;;.c,.~k
'"'~o,-.,..,..,ooooooo,u'-'-'-'-"""
Be}l)w ~nd !!udace
. .... ... .., -----~..,
.,..
WQII
ldentm~r
Other identifier
Top of Bortom l..etfiude longitude open of open
!ntetllal fntervl
Tran&> mh>sivity
(ff!d)
Ston~ge
Coeff!c}ent
Method
{ff}
(ft}
-..<.'----------------.-,--.-,-,-,.
21iAMH 'ibid;~ Ka~~iill, W-l 33"!5'46" 8Y27'!l''
145
15.1
lYX)
sc
R*ference
.Hf.:.J:..>k::: ;Hsd r;t:.l:;;s::d%5)
Hydrok>g!c
W'lff
~t F'l
---~..--- ...........~~~
Remar!<;&-
de.
Glynn
32Wi24 Lamar, Stut1';<rd jF(J9'l~" ~l"4iYilif'
2!4
th.
d<),
32W:r2t.
O,;h;mt, N !~
}~.')Jtr~n~' &l '':l8'LZ''
~!92
>h
do.
32J002
SCLRR,
Th{slm:lm.~
.Jl0l7')6" SF4l';rJ"
70fJ
5J~ t l(.!,ij(liJ
44'i 66.non
?40 WGOO
(JOUJ
.no5
,OM
NL k~t<~ and M;;:;;!ia
(!994}
~k}.
<.1<.).
d<)
do
IfF
J(>!F:s tmd M;;::!ia r;iti~ ;;::sr~,, l;t ;s:;
e,;cdkni..
de.
knc> ami \{8slia cite tm<t;, ih <t>
gnd
rb.
Inne.;:, and Ma:>li;; dte cur<:e !h u;;
fair
<h
do
:BHiliH
M.adQ.<' i\{;~titt
:wo;~9''
~!"35'54"
550
9'1!
i>S,iJOO
.UP
;];)
rko.
<.iard<..'n(luh
do.
d;;,
M'' 33H036
<tf'.>m(lt, J\.ndr<:".',,. :W12'W' ~o~::;J(ss\
%0
(.5i}
SS,ilW
.f}(:7
J;;.
d;.o.
de.
(k
33H052
Amkr:mn. L L
3t''l4'UY' ~:<'32(14"
560
W"'/. ..'
89/~(J(J
JJU4
;j~;.
di;,
(b.
.J;m% mul 1->{a:;li;l dle cur<:e t1! u;;
;:;<xx!
<h
d".
du.
J;me:< and Masliu ;:ite ;,tttY<; iil <t>
i(>il
d:.."t.
dt<.
.\~Wl7R
Willis RB.
.H'l2'39" stJ!'U" 55()
730 <J5rKlU
Zltll
dn.
dn .
<.k>.
Jones ;md .Mslia cite curv<' !h fJ~
<~x<;dkHt
<h.
<.k>
:HHHJO Jenl<ins Th'-"<t:e J!"l.l'1<Y ~ !0 10':21''
~~;o
777 7.HX'l0
.fi0()4
do.
;b.
fb.
.km,;;; <\nd M:dh; d!c (i.llYC ill"'
go<x:l; kakrHle;: IHKK.!;!J ft.:"diit
;.J;.>.
(.~(>.
JJW33 Bna'!swit~k: TW-6 ~~ j "ll)'(j(;" &l "'.~(>' jf,"
52()
7\lll
63~i)(k}
OtlU4
d:..-r.
dt).
>.k>.
J<>m'S ;;n;l M*'lia dt<: c~srH> !;t '''
gix>d:. ;.,.,~~bm~e 0.0>:}025 lhl/!l
d<.1.
;k;,
.W.Kll.> .k~:yU !:<!and r~', )n13'!5" SP'24'l'\''
521(
7&4 93J!fKl
.o-ns
dn .
dn.
th
hne;; and tvh~lia t:.ik t~mv~ !lt as
f;:,Sr
;h
dn.
.'J4GiYl'i
.idcy!llslrsnd l.J
3 f ~!iJ(}~5s~
8!"25\W
502
7!:' 60,()\)i}
,OOJ
<.h
d<.>
(!.(i
dn .
d;,,
do
34H002
f!b.;ie..!)hfien
31 "!(/:'))' ~1~23'27"
5:H
~~(~
f,4,\l()0
.(Ji):tJt.
tkt
<.k>
(Ft<:>n:.J
rJo
J<>.:'H~> :~:id ~..:~as~ k~ c~t::; ct~rH: fct ~:::\.
gmxl: btkmo.:e. (J (jiJiJ095 fiidilt
do.
$;,kr.
34Hfi'!{i
H~t<:llJ.~; be .M
.J:'WiY~ !H''29'0l"
48(]
;.Ill 58,0()1)
.{}i)i)2
d.~).
d(t,
d~~-
<.h
34H()78 !l<XC~J!r:s far; 1) Jl''i}<)'4ii" 1W2&'52''
545
~90
)6/KK~
.00006
do,
d<).
ii<.l
i<).:J::;~ :!tld t.1asH3 cit:; curv~:~ ;jt ~"-:~
w;il; k~l~'"...,=' () i;ow. nid:fl
~
"t::
do.
.krn:~.':\ :;nd ~1;$:~1h ~.:it~ ~.::tW'.:'C t1t
~;::~ excdk:nt.: t::~s~;~IH~;.:: ~1/KKJ0<:>5
=el33:
)1
!':i<.i:'tt
~
iwt>
Table A-1. Transmissfvlty and storage coefficient of the Upper and Lower Floridan aquifers and equivalent clastic units, coastal Georgia
.s:.
0
and adjacent parts of South Carolina and florida--Continued
[ft, foot; ft2/d, feet squared per day;%, percent; do., ditto; ft/dlft, foot/day/foot; o, degrees;', minutes; , seconds; SJWMD, St. Johns River Water Management District; S, storage; T, transmissivity;
USGS, U.S. Geological Survey; SCDNR, South Carolina Department of Natural Resources. State: FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, nonleaky aquifer analysis; L, leaky
aquifer analysis; SC, transmissivity based on specific capacity; SL, straight line analytical solution; V, van dcr Kamp analysis of oscillating flow (Kruseman and de Ritter, 1994); (?), analytical
< X
; A
method not cited. Hydrologic unit: UF, Upper Floridan aquifer; LF, Lower Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit enclosed in parentheses indicates a clastic updip aquifer equivalent to the carbonate Upper or Lower Floridan aquifers]
.5c..:,..r
----------------------------
--
---------------
Below land surface
------~---------
----
------------
0 'C
~
State County
Well identifier
Other identifier
Latitude
Longitude
Top of open interval
(ft)
Bottom
of open
Interval
(ft)
Trans missMty
(fi2/d)
Storage coefficient
Method
Reference
Hydrologic unit
Remarks
-;~
(II
e
f
--~~------------
-----~------
GA
Glynn
34H085 Brunswick Coffin 31<'09'06" 81"28'46"
514
Park
do.
do.
34H097 Georgia Ports 3107'55" 81"1.9'27" 584
Authority Main
Office
do.
do.
34Hl00 Riley, Barney 3108'06" 8129'25" 595
do.
do.
34HJ25 U.S. Geological 3!0 09'06" 8129'31"
535
623
... ---~---------~- ------~~------------
33,000
.0006
NL
Clarke and others (1990)
757 160,000
.007
do. Jones and Maslia
(1994)
786 33,000
.0005
do.
do.
604 56,000
.0003
do .
do.
------"''""'*****-----------------
:II
UF
T from recovery cited as 40,000
0 ::l.
do.
ftltd; S as 0.00057 Jones and Maslia cite curve fit as
A
= ~
>
excellent
.Q
c::
.i..f.
do.
Jones and Maslia cite curve fit as good
-~
I'll Cll
do.
Jones and Maslia cite curve tit as !
Survey TWO!
excellent; leakance 0.00023
ftld!ft
do.
do.
34Hl32 U.S. Geological 3110'20" 81"29'52"
540
1,200 64,000
SurveyTW02
.0003
do. USGS files
do.
Upper and lower water.bearing
zones
do.
do.
34HJ33
Brunswick
3110'35" 8128'58" 520
Goodyear Park
800 57,000
.0004
do. Jones and Maslia {1994)
do.
Jones and Maslia cite curve fit as
good; leakance 0.0012 fu'd/ft
do.
do.
34H205 SSI Lighthouse 31"08'01" 81"23'37" 477
608 85,000
.0003
do.
do.
do.
Jones and Maslia cite curve fit
as excellent; leakance 0.00015
ftfdifl
do.
do.
34H328
USPS Fort
3! 0 13'19" 8123'29" 600
640 72,000
.002
do.
do.
Frederica
do.
Jones and Maslia cite curve fit
as good
do.
do.
34H344 Brunswick: TW-7 3 109'38" 8128'52" 504
770 23,000
.0003
do.
do.
do.
Jones and Maslia cite curve fit as
excellent; leakance 0.00023 fi/d/
ft for 7/85 aquifer test, 0.0012
fu'd/ft for 12186 aquifer test
do.
do.
34H371 U.S. Geological 31"08'18" 8129'36" 606
700 69,000
.0005
do.
do .
SurveyTW II
do.
Jones and Maslia cite curve fit as
fair; leakance 0.00022 ftld/ft
do.
do.
34H374 U.S. Geological 3109'53" 8129'59" 52"7
696 41,000
.0003
do.
do.
Smvey TW 14
do.
Jones and Maslia cite curve fit as
fair; leakance 0.000076 ft/dlft
do.
do.
34H392 Brunswick Jr 31!1'08" 81"29'10" 541
660 75,000
.0004
do.
do.
College
do.
Jones and Maslia cite curve fit as
fair; lea~:ance 0.00024 ftld!ft
Table A1, Tran$missivity and stora~ CC~~ffiel!nt ;,)f the Upp~r and L<rwer f:foridat) aquifers and eQIJivah~nt clastic unf!s, coas1al (.%org!a and ;;tdjacent parts of South Cato11na and F!orida--Contlnw:~d
i1i, gmt; f(!d, teet squaml per day;%, p~:rccnt; do., ditto: fl!dift, f~mtJday/h}nl; ",degrees;', mi.n:lt<:s; ", ~<:::0nnds; SJ\VMD. St. Johns River W:J.t(:r ~kmagt~mcnt Distriu; S, :>i<>mg(:'; T. mm~nnssi<-ity:
USGS, U.S. Gedngical Sutvcy; SCDNR, S<l:lth Cardlna Deparlrw~nt nfNatun~1 Rewurecs State: fL, Fh)tidu; GA, Ckm:gi~l: SC, i>nuth C;;rnhna. MdwJ: NL, nonkaky ;J.quikr am1!y->k L, ka:i<y aquHer aw;lysi.s; SC, t;<lW>mis~dvity base;! !Xt !lt-~ifie capw:ily; SL, ~.wright lin~~ ;n1aiyti<.,al whlti\)l); V, van dx---r Kmnp mmly<is of o;;dlh!ing How {KnlWlNtt: and de Ri!ter, !994}; {'(i, ~n;J.(y!u:a!
method W}t c:it<:'::!. flydmk>g.ic lmil: Uf, Upper Floridutt aquifh; LF, Low(~!' Fl<)ridan ;J.qui-fer; UF,Lf, Uppl~.- and Lm>w Floridan aquif1;)1'S; hydroh>gk unit (~ndo~(~d in p;lr(:;nth;;;::.;>:~; indicak:; a c\a~;tic
updip aquifm- eqBivalcnt t(> the cmlxmM>:. Uppet ot UiW0J' F!orid2.n aquil~:r:;J
................ ~ ......
..._......._..........................................~... Bclew hllid $Utfaca
..,..,.,..,.,.,..,..,..,.,.,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.<.<.-..<.
"""'"""'""'
State County
w~u ldemm~r
Oth~r !d~nt!tler
latft:~td~
--"'"""'""~-
T~ot Bottom
ll'an~-
L<:mglW ~n
lntt~rv1tl
ofopetl
in1~rva!
mimsivity {f1~/d)
S*or'ag~
(lt3effic(:ient
Method
Refereonceo
Hydrol~!c
unit
Remarl<s
-----------
(ft.)........................(..f..t..j.........................- - - -
G;-'\ G!yuu
J4H4i.ll U.S, Ge;}iogka! 'H"(J9'4S" ill "::t'f~;:y'
5"2~~
7:56 85,000
0.0003
NL USGSfUe-;
t!F
!harvey TW 21
..,....,.,.,..,.................................................
tli:O,
dn.
~54H412
H.ereul*S ln<: Q JFHJ'l~>" 8!"29'22"
54>$
630 64.000
.I)OH;;
~k}. J:m<:<S and Ma:<lm i l'~94)
de.
.i<~!~(;S ;md ;\{~;!ia dk <:un'<' fit :s:<
~;<x>d~ l;:<lkam:.' (l.(ltit)2 5 !~:'din
dc.
<h
H!-1424
H~l"-'11!~,.,; ho.: T
3l''!O'll" f$! 0 1<}'} l ,,
550
745
67~i)(X}
. i)(~)j
~~0
<.k> .
f),,_
d;),
34H425 !lcr>:uks hw U 3! ''!(l']6X l'>l 0 21;'5a''
~~u
7{)\.l
66,<XK>
.O(X}J
d.(
<.k>.
d"'
<h.
34H42i Champion, r: M 02 3i''Hl'i6" !l 1"2'~'42'"
5(~-~
64D i, 7.,0i:l0
oo:n
d(>.
d:).
do
J<}<\C:< aad M.aslia dtc eurl!l~ lit as
::c~,,.~nent: krs~;r,-rK> 0.'~"><>11
!'!/d.'!t
do
.loM~ ili~cl Maslia cit:; ,~un;~ i.it >l~
gm1d; kak~J\Ce (U}002l ili<:l 1li
tk>.
.h::v::.s :1nd ~i:~;E~ ~:~-;~~ :.~;>Y~"! f$t ;35
t'X<.:di.;;:ni.; j,.::<)bilCC 0.00(!2'1
iiJdif:.
dt).
de
_1,Hi>J4<)
(kx:>dy>~.;or Pro'!:.
}l"l<Y~6"
1'5.! 0~~8'57'"
3SO
75:?
59.,ij(ii}
.0006
C<..). USGSiib
do.
dn.
do.
3'HW.i<) I.!.S G;;:;).k>gb1l 3P'liY20" 8!~29'52'"
540
Survey TW <!2 Pt !
.~66
i,V)OO
,0003
d<). Jnm~:< <md M:sxli<< {l91::'4)
(If,,
Jt~r:>.$ ar:d !'-,ht:>Ha ch::;:~ curv~ fit as
''-~<.:d.lent; l~kancc (U)\lil."l::t
!Vdift
do.
d(>.
J4Ji)t:i!
BtWl!O=Wkl: 2-W
Fi~;h
.H"l'-}'37''
3!.'>:Ze4~rx
ll(),i)i)i}
.iJijiJ({
<i<.>
<k).
de.
;.};),
34JH09
Newh<)!X'
:>nsw 1<1"26'5!" )<\n
no 140.(}00
.nn~J;
do.
;J.>
Pbnt:sli<.m
d,),
d'.).
35HiJl.:! :;;.~a Islmo.i Gua :lF!t/,!9" 1!1''2!'29''
5!4
64.0 56,()00
.mu
do.
;J;<.
Clu!:. Old
dt:.
kix:s ;md M1.!:<! i;,; dt.>: <.:m'-<' fit a,;
i:2.\3\Xi
do . .lone;; awl Mash,: ;:i:;c>:une fit<J,'i
::.\Ct""::l~d""it
f);_;
Jon_e,; ar:d Mas\ia d;, cHtvc U! ;!s
g(>(~d
d>).
d(>.
35!Ul.li l3tu1Wwii:k: t>SCG JPflW45" 81 ~:22.'16'{
5Wi
704 55,()fiij
.Ui}'
<.\;.>
df>.
35HM2 iki bbml C<'- }l"ll'41l" al ''1(r i r
584
l,il4i) f,4. 0U(J
&--22ndSL
;J;.<,
l{;.>wi!ml
liTOOl
!:k~rd
3J.<::::vu,r. il~VJ?"!S"'
278
Cr:trsJni%..'<::h':tl..;:t:;..
Hayr,~svl!k
3.47
l,l(!G
do .
d(>.
de.
d<).
Sl..
\V~nf ~.n~d Of :;1:~g.
(!473)
df.
Upp<'r ::rKl kwe1 'vatc't bc><ring
J..<);-tCS
w >
~
) ........... ,_'}'k
B1<.x>ks M<i others
iLI-l
~ ~ ~
{ l~i~S}
X''
>
...,.
Table A-1. Transmissivity and storage coefficient of the Upper and Lower Floridan aquifers and equivalent clastic units, coastal Georgia
N""'
and adjacent parts of South Carolina and Florida-Continued
[ft,
foot;
ft2/d,
feet
squared
per day;%,
percent;
do.,
ditto;
ft/d/ft,
toot/day/foot;
0 ,
degrees;',
minutes;",
seconds;
SJWMD,
St
Johns
River
Water
Management
District;
S,
storage;
T,
transmissivity;
USGS, U.S. Geological Survey; SCDNR. South Carolina Department of Natural Resources. State: FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, nonleaky aquifer analysis; L, leaky
..=-<:I:
aquifer analysis; SC, transmissivity based on specific capacity; SL, straight line analytical solution; V, van der Kamp analysis of oscillating flow (Kruseman and de Ritter, !994); (?), analytical method not cited. Hydrologic unit: UF, Upper Floridan aquifer; LF, Lower Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit enclosed in parentheses indicates a clastic
Ill
-5.
~
updip aquifer equivalent to the carbonate Upper or Lower Floridan aquifers]
l
State County
Well Identifier
-----.--.-----------
Other
Identifier
Latitude
___ ~~-~--
-----
Belo,.w___l_a_n__d___s_u__r_f_a__c_e__
Longitude
Top of open Interval
Bottom of open interval
Trans missivity
(ft2/tt}
---------
Storage coefficient Method
---~-
Reference
Hydrologic unit
-
Remarks
~---
"C
:CaD.
-a.
:IF
(ft)
(ft)
ell
,----------~---
-...,--~--------
GA
Irwin
20L003 City ofOcilla# 3 3135'42" 8314'51"
266
-~----------
645 10,000
sc
----------------
Kellam and
Uf
------------~-
:I!
!.
Gmday ( 1990)
a.
!
do. Jefferson 26WOOI Wadley I (Ruby 3251'34" 8224'19" 370 St. Well}
do.
do.
26X002
Louisville,4
3259'45" 82"24'43"
220
473
5,900
308
5,700
do. Brooks and others
(LF)
(1985)
do.
do.
do.
=E=
.C.l.l
en
do.
do.
26Y002 J.P. Stevens, 2 33"00'15" 8227'31" 214
375
5,800
do.
do.
do.
-<
I
do. Liberty 33NOOI
US Army,
31"51'46" 81"36'49" 451
816 124,000
NL Warren (1944)
Uf
As cited in Bush and Johnston
1!
Ft Stewart 0 I
(1988}
do.
do.
34MOI9 Interstate Paper, 31"44'31" 81"25'42" 200
535'
535 160,000
0.0005
do. Dyar and others (1972)
do.
T ~ 130000, S "'0.0004! in
recovery analysis
do.
do.
34M021 Interstate Paper 31"44'42" 81 24'34"
145
445 160,000
.0003
do.
do .
Company, 445'
do.
T = 120,000, S ~ 0.00047 in
recovery analysis
do.
do.
34MOSI Interstate Paper 3144'38" 81"24'25" 427
810 160,000
.0004
do.
do.
Rust I
do.
T"' 88,000, S"' 0.00054 in
recovery analysis
do.
do.
34MOS2 Interstate Paper 3144'35" 81"24'39" 418
810 !60,000
.0002
do.
do.
Rust2
do.
T ~ 88,000, S "'0.00054 in
recovery analysis
do.
do.
34M090 Riceboro, Ga., 31"43'35" 81"25'28" 502
1985
705 130,000
.0004
do. Krause and
do.
Randolph (1989)
do.
Long
33M004 USGSTW3
3138'54" 8136'04" 538
870 250,000
.0007
do. Randolph and
do.
others ( 1985)
do. Lowndes l9Ftol Valdosl!l, Ga. Deep 30"54'51" 8315'05"
180
Observation
450 94,000
SL McConnell and
do.
Hacke (1993)
do. Mcintosh 35L08S Dan Hawthorne I 31"36'08" 81"18'27" 1,144
1,422
6,000
do. Harrelson and falls
LF
(2003)
do. MontgomCI)' 25R002
Cityof Mt.
32"10'47" 82"35'37"
347
Vernon
400
5,500
sc Kellam and
UF
Gorday (1990)
do. Pulaski !&SOI2 Opelika Mfg. 32"16'52" 8327'57" 306
Company2
36!
9,800
SL faye and
McF;~dden{1986)
(LF)
Table ANt . Transmissivity and storage coefficient oi the Upper and LOW(!f Floridan aquifers and E!QUivaient clastic units, wasta! Ge;.>qJ1a aM adja\:ent patt~< l>f Sowth Carolina and F!oridaContinut.!d (h, H)ot~ ft'~i<L l~<t squ;m,.-d j)(.<f day~%, fM(:tmt; <h, ditto:, ihHL. ih!)t!day!li:snt~ ", deg,rees; ', rnhmt<~s; ", !it:wnd~.; SJWMD, St. Jnhns River w~~t~r Managem1~"nt DistriN: S, :>t(~r;l.fi:.': T, tmnsmi5&ivHy; USOS, US. Geological. Survey: SCDNR, Sou!h Cm~iina Department of Natura! Ress)WC<!S, Stat;;;; FL Fhwicln: GA, G;e1xgia; SC, Sm:~th C~mlina. Met!K)d: NL, nonkaky aqBifer andy~is; L kaky
en, aquitb an.;:oJy~i~; SC, transmi~<ivity baf.cd on Sp<;.-x;ifie ctip%ity: SL, :>U':'light line ;malyti~;l so!utf;)n; V, van skr Kamp analy!<l2< nf o;;dHaiing Hvw {K;':.lUm~Ul and de Rilt<T. l994); ana!yth:<il
rndho<f tmt cit<."<L Bydroksgic unit: VF, Uppt~r Floridan ~K{Hifi~. l..L. Lnwt::r Floridan aquifi;.~-; UCLF, Up}X!t and Lower Floridan <lquifi:r&; hydmbgi;; unit ~!~dosed in par>;;nth<;.~:<~~~" in;)ka:e~> a d<Hic
>lpdip aquilh i2'qHiva{<mt li.} the carbmmtt:: Upper 'X Lmv::::r fhxidan ~quik-t'i']
--~~
________.,..,..........................................................................................................................................................,............
aetow land !Surlooe-
..,......,.,.. ........... .
Srt(! Courrty
Wei!
W~mfifmr
...................-
GA
Pt~kl~};j
li$j',{l!5
Other
hientitrer
lh~11K)rd 2
LatUude-
J1~J6~~2~
L<mglrude
Top of
oper~
tnwrvat
BQttt)m of open lnterva!
Trans~
mi~S8htlty
{ft2/d)
___ ____,
(ft}
(ft}
......................................,""'
83-::z~.:/24''
.3?4
42<}
/.,li.ii}
Storage
co~kiMt
Mctlwd
Referen~
Hydro!Qgie unit
R9markz.
- - _ ...... .......... ............_......................................- - - - -
sc
fh~;i'}k:< and Nh,,!':<
n..F!
(l'l~Yl
do.
Scnwcn
]1\]i}l
J.P. King# t.
J2''3i/l8" ~!"44'2::<''
25,~
<k>.
d;)
}1WM5
Sylvania ii2
32'>4 5~1 ~}l( 1W3S'l2"
!50
670 D.OOO
:lot
4.. tf>O
dn.
<ln.
Ul'
SL vst:s i\ks.
<k>.
do.
d;)
;,\<.>
~~~).
l1X037 MiUhawu Bu~'lla 32~>5715{? Sl''37'2:2''
37U
Vh=w
:HX051 USGS MH!ha:;;;:u 3J.~s3~~s~ 8j::]f4T'
5I)
TWl
565
3,5iil}
so
!.</~})
;Ji;.
F,w,~and
McFadden {l%"i)
d(;, Cl>rrk:c and othe-rs
!l9%)
{i..F) (UFl
ci;<
d<).
~nXtlSl USGS Mil!ha~~n 32''53'.25'' ~WJ5'43''
!55
205
5,6<}.)
nv.2
di).
~k~.
de>.
dn.
;h
.BX(}:H
USGS MiUh~~v~;n
J2~~.13:::r1:t
f>l 0 ~~5'4Y'
125
1W..3
nu
l ,301.1
do.
~1n.
d().
d<J, 'li;ttna!J
U>Qml2
{)corgia S~;;i<' JZ"OiYl3'' S2"G9'54"
5()(!
!'risen# l
l!W
'!.,liJi)
sc Kdlam;;;:;.l
d:).
Omd,~y ! l;.><m}
::b
d.,'),
29i,YJO! City <.:fll.;;:id.'.;vi!k P 32f;)'())" 20l\7'l(}x
51)()
l
'lU
,5i~>
do.
<io.
;J;),
<h
1'tM~ir
22Qt}}1 Clry ;.:fMd~~'' iJ l .U"04'lW' S2'>5J?4tt
l2il
<'b.
do.
22Q003 c;ty <)fMcR~<~ # .~ 32"01''54" 32'>54~4(}X
235
(>41)
7&>ne~;
545
tl,(l()(>
;k
do.
<.k> .
;k,
do.
d<.>.
do.
d<).
24Pi.li}6 City ;;{ l..ur:-lhm 31''55'~ il2'',!l'i){i"
3Yl
City# l
45f;
7/~ei.l
,1;),
do.
<.k>.
dt~.
do
241-'i)i}l,l
N.S Wh<:"ks
~~ j "%'2?" 82'~4<}'~H"
40()
'?'l8
6)~~{)
dn.
do.
;,.!<,>,
de.
Tift
!7K(}6l City off<ftrm 112 )j~21'16'~ SYW'4<':>"
21S
)l)! 50,1)()()
d;;,
Kdbmm~ci
<.k>.
>
~
Gosd:~y (l9:Xl}
"g
;:!
do.
dn.
lSKOOl
City <.>!'THbn :>!''24'5!.'' $}"29'24''
Y1i.i
f,W
}},(>(.!!)
<.k>.
dr:.
do.
~ ~>
>
-1><
~4
Table A~1. Transmissivity and storage coefficient of the Upper and Lower Floridan aquifers and equivalent clastic units, coastal Georgia and adjacent parts of South Carolina and Florida--Continued
t
{ft,
foot;
ft2/d,
feet
squared
per
day;%,
percent;
do.,
ditto;
ftldlft,
foot/day/foot;
0 ,
degrees;',
minutes;*,
seconds;
SJWMO,
St.
Johns
River
Water
Management
District;
S,
storage;
T,
transmissivity;
USGS, U.S. Geological Survey; SCDNR, South Carolina Department of Natural Resources. State: FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, non!eaky aquifer analysis; L, leaky aquifer analysis; SC, transmissivity based on specific capacity; SL, straight line analytical solution; V, van der Kamp analysis of oscillating flow (Kruseman and de Ritter, 1994); (?), analytical
::;
<.c...
Ill
method not cited. Hydrologic unit: UF, Upper Floridan aquifer; LF, Lower Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit enclosed in parentheses indicates a clastic updip aquifer equivalent to the carbonate Upper or Lower Floridan aquifers]
.5t:,r.
----~--
......---------
~-------
-----------
~--~---------
--------
a
State County
Well Identifier
Other Identifier
Latitude
Below land surface ..........
Top of Bottom Trans longitude open of open miasivlty
Interval interval (ft21d)
Storage
coefficient
Method
Reference
Hydrologic unit
Remarks
1;,
a:..X..
--------------.......-
.........---~~-
GA Toombs 26ROOI City of Vidalia # 2 3213'02" 82"24'36"
(ft)
(ft)
-------------------------
720
1,000
9,800
:;r
--------------------
sc Kellam and
UF
~------------
~ ..,..
a-
Gorday ( 1990)
c~..
do.
do.
26R003 City of Vidalia 3212'39" 8223'22"
442
800 14,000
do.
do.
do.
=,t..
do.
Ware
27G004 USGSTW2, 31 07'05" 8215'56"
636
1,785 1,000,000
Ware County
150,000
do. Washington 22Y007
Test Hole2
3302'36" 8256'49"
36
114
2,700
NL Matthews and
Krause ( 1984 );
v
R.E. Faye, USGS
retired, written
conunun., 2002
do. Faye and
Uf,LF (Lf)
Well completed in Upper and Lower Floridan aquifers; flowmeter survey indicates 90% of flow from Upper Floridan aquifer
Screen intervals 36 41. 54-69,
.=..~
II:
CD
=<Ien
McFadden ( 1986)
and 104-U4; latter in
Cretaewus strata
do.
do.
22Y008
Test Hole 3
3301'01" 8257'05"
33
200
720
do.
do.
do.
Screen intervals 33-A3, 48-58,
133-138, and 190-200; latter
two zones in Cretaceous strata
de.
do.
23X034 Holmes Canning 3256'!9" 82"45'01"
!82
Company, 2
335
2,400
sc Brooks and others
do.
(1985}
do.
Wayne
30K004
.Justiss Mears
3127'19" 8152'53"
662
770 270.,000
0.0004
NL Randolph and
UF
BP&P#l
others (1985)
do.
do.
30L003 Homer Johnson 3137'01 .. 8154'34" 472
584 240,000
.0006
do.
do.
do.
do.
do.
31LOOl BP&I' J Mears 2 3131'04" 8! 0 52'18"
587
691 260,000
.0004
do.
do .
do.
do.
do.
31M009 ITT Rayonier Dl, 3139'42" 8! 0 50'39"
480
1,009 280,000
.0005
do.
do.
do.
GGS-297
do.
do.
3lMOlO ITT Rayonier 02 3139'34" 81 50'22"
486
1,010 270,000
.0005
do.
do.
do.
do.
do.
3l.MOI3 11T Rayonier 05 3138'59" 8149'59"
500
1,000 220,000
.0002
do .
do.
do.
do.
do.
31MOl4 lTt' Rayonier D6 3! 0 39'11" stso:w
493
1,000 230,000
.0004
do .
do.
do.
do. Wheeler 22(>004 Little Ocmulgee 3205'42" 8253'09"
194
State Park
248
8,200
sc Kellam and
do.
Gorday (1990)
do.
do.
23R001 City of Alamo # 2 32"08'59" 8246'43"
352
600
3,300
do.
do.
do.
Table A1, Tfansmis..~ivi{f and str.~r<t>;Je <;O(!fficlen! of the Upper and Low Floridan aquih.:ll$ and equivaient c!aslh~ units, coastal G~nfgia and adil?lef.>nt parts of South Ca mlina and FlorldaContinued [tt font; lt'!d. ket sqtmcd per day;%, percent; do., diltn; 11/difL f~11.)!:/Jay!Rlot; ~.degrees;', minutes; , ~~;::>.}nds: S.lWtvW, St. Johns Riv<~r Wat>-"r Mm;:;gement Distrk:~ S. stnrag'-"; T, lr:::ne>mi::sivity: USGS, US. G<.>.}bgical Sw'vs:y; SCDNR, Swh Carolina !RputhMnt of Ni!l:ttri{ R>""'!<OU(<,..'e:S. Sbtw FL.. Florida: GA. (korgia: SC Sollth C;;trdimt t'>il:lhixl: NL, nnnJ.taky a4Bifcr armlysis: L l:;:r;~;y ;squilh ;ma!ysis; SC n<:n->missi~.=ity b:~scd on $pedtk. capudty; SL, ;;;rai8ht hai;' ;;nulylk~a.: ~dutisxt: '/, van der Kamp mmlysis of <.)e>~iUating !1GV; fK.rw->mnan ;l.nd <k Ritt>-"r, 1 (:>i}4.L ('!), :mal;tica! md})<)(! not citsxl. Hydm1ogk unh: !Jf, Upper Floridan aq\ti!'t!r; I..F, Lmver f!(ltid~om aquikr: UCLF, Upper and Lo-...v<~t Floridan uquikr8; hydrologk unit endosd in p'ilt~nth($~$ indi;;.:>K-5 ~: cbstic
updip a*1ifer {~qHivaien:t ;.(>the <:1.-:tbunak Upp~~r nr Lmver Florid:m a4uifcr2.]
.o~'-._..
State Coumy
Wen
identifier
----------------' ~c Allt'ndak 3)At\-y5
.,...,.~.,.,..-,
uooooooooooooo~'-'-'-'-'-'-'-'-'-'-
..""""""'"""""""
Below !ami aurfat:e
.-,-,-,-.-_-,-.-.-.-.-_-.-.-.-,..,""'""""""""""""""'"'"'"'"'""'"'"
'-"_ __
Ot!mr
identifier
tat!tucl~
Top of l<mgltude ~peft
lnter'll!ll
Bottom
o1o~n !nt~ntil!
Tram! misslvlty
(ft2td)
StOf8{!(! cooff!doot
Method
Re<fereMe
Kydro!~:~gk:
urs!t
R~marka
(ft}
{#)
--~---~----~ ------------~~~------
.....................................................
-----~
ALL-!.5J
.'l.1''fiif2 i" s!" l<i' l:'i"
2'1()
}4!}
3,9{~~
SL
Nf'..~-.;-:..~'>.n't~ ~ 100fJ)
LF
Ncw:..:'H~g: t;s~c~~ H:st l~ir
<.\<.>
dn.
JJ13B-p1
A!.J.-"!>26
\F%'.W 1W14'1l" 257
.N'i
5iXl
d;J.
do.
d<.>,
Ne-,\t~,;::~u:J:~:: :2te:; v~:st pO~.')
d<)
;j;,),
33l..-yl
ALt4il
JJ"{i5'1Rx 1Wi4'1()"
ISO
3!fi
4,(li}i}
d<l.
do.
<.k>.
<b.
d~).
d..:.).
:'l4/'>Aq2 /<,{l_..:;!{:i~ ~ l<>wn }J"ZH\il X iS l ''lS'(l'!"
:140
d A!knsia!e
<.k>
,1,).
34A.-sdl}
Al..t-nn
s J.Fti I'(}I)" !"! 1rJ:2''
l.'l4
32i:<
2.,9iYJ
444
3.JZlU
<.k.
As;_.;_:~.:tt an-:.~
New~..:~.nne (; <!S.6)
do. N,,.,,,,xm;:,, tznnm
<.h.
do.
New~~ me r:~t;;:; h'S! fair
<l<.>
\l;),
34,\A-:<.4
/,,Lf..-3 !0
Jj"'(i! 'i}l X Sl'"l8'tlT'
240
do.
d<.>
T~.A/-,.q;>
ALL--375
:tnww" Sl'"23'tlY' 1'U
329
J)lltl
57t<
9'?0
0.0i)(4
do.
(b.
NL USG:'i Ilks
dt).
Ncw-:_-.~_.~ne r::t~% t~:~st g<.xd
(k<.
<io
do
.15Msq1>
ALL--374
3T'U! '"5(l" 8F2.nH'' 450
d<)
do.
3t)AAt)! A!..L::rl-- S*li.kn, 3T'Zln.y 81"2,:>'!\J'' 460
ho.:. n<.>. !
;JJ;.
d\'!.
3n-q"! AU.. 66 Creek J3"i.l6'55x Sl':~:r%''
JQO
l'lar:tatkm
>:h Ui1mhm-g :llXm5
BAM-24
J.Yl7't;;l" sn12-zr
l4H
d(3 .
d:.:.
~HYq!
!>.AM,62
33''! 1'w" st'O!.nY
4&
de.
sk>.
JlZ-il
BAM-26
33'\!6'!0" 8l''iJiY liY'
N
dn.
do
32X-.d;
BAM:B
33"! 9'27" !',! "i}~'2.~''
!f!2
.'fi5
1,.20{}
7~}4
1,10()
nu
?)Oe
Y4
6an
::!6(l
t~7(3f:
225
f_t7{J
29f~
U00
.f!fKJ3
do.
;.lt),
SL Fay>: and
M.<.:hKldt~n ( l9%i
N!
;.l(.l.
;)<;
(Lfi
do.
Sl.
N~~W<):._\~:) ~ 2~'-~'Y>)
;J<.<
dt'.
<.k>.
(!;;.
:.!<>.
(1\i.
LF
-N~.::\~. COfl1( n~tr~::-: t:;;~.:: p~)<))"
d,)_
N~..,-:~~--~rae ;~l:f.~.~~: t:;~:_ ~~n:
,'J<-,.
Ncwc;,.~~-=}:; -:-at<t.:~ :~--st {~~~~~:
&-J.
Newc\)lr~::: -:-~it{;::~.. :~::st i1~ir
dt).
do.
3:n:-g}
;h B:mm<'ll BZ.nl
BAM-22
BRNC:!.<l5
~rr1w:=:i'}
ap:u~:t9' 1
!62
.}.1.::'(r1'.~ ~t<t
31 ~; 3'41~1
l7.J>j
3()2
R(!(}
2f>(!
6}(10
d;).
(!f..
do.
;J;;
.-h.
NCW<.~\3m::: r~t-:;::~r t~~t {1f!O'!
d:.<.
Ncw<.x-:rm:: -rat~~~ :,:..1$-t (:.t~r
;!;;.
d(>.
>h
do.
;h
do.
<.!<.>.
dn.
J4W>4 OJ4X..t!!
~:>Y~l:>S
35Yct
f}l{N..J5
BRN&86 !J!{N.&{) !JRNSI
J3~:2 I 14i)l< Sl'"l83U''
204
:.:~"15'4'1'' Sl'".lYtW
NO
"YP14'iYT' Sl"n.'W'.
2lS
rY!4'iO" Rl"22'45''
!l\0
47U
4,!0\)
J45
soe
T.!"l
11,00{)
.120
4,7\J()
do.
<io
(h
d.o.
~LF)
<.!.).
fb. r~":tv..-u:~t~c rates tt-::~;t po-:_)r
f
<'b.
do.
.k>.
fb
i
;('
&!.
d<).
dt>.
J<).
)
~ Cl
~
Table Ae1, Transmissivity and storage coefficient of the Upper and Lower Floridan aquifers and equivalent clastic units, coastal Georgia
and adjacent parts of South Carolina and Florida~ontinued [ft, foot; ft2/d, feet squared per day;%, percent; doe, ditto; ftldlft, foot/day/foot; 0 , degrees;', minutes;", seconds; SJWMD, St. Johns River Water Management District; S, storage; T, transmissivity;
i
USGS, U.S. Geological Survey; SCDNR, South Carolina Department of Natural Resources. State: FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, nonlcaky aquifer analysis; L, leaky
01
c::
aquifer analysis; SC, transmissivity based on specific capacity; SL, straight line analytical solution; V, van der Kamp analysis of oscillating flow (Kruseman and de Ritter, 1994); (?), analytical
~
method not cited Hydrologic unit UF, Upper Floridan aquifer; LF, Lower Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit enclosed in parentheses indicates a clastic updip aquifer equivalent to the carbonate Upper or Lower Floridan aquifers]
e_ _ _ _ _ _ _ _ _ _ _ _ _ ,w
.~-----------e------------
Below fand surface
---------w---e_ _ __
~
1a. Cll
State County
Welt identifier
Other identifier
Longitude Top of"'-BOttom- Trans
latitude
open of open mlsalvlty Storage
Interval Interval (rt2/d) coefficient Mmhod
Reference
Hydrologic
unit
Remarks
atil
~
CD
sc Barnwell 35Y.c7
-w-
BRN-61
3314'30"
lW23'10"
(ft}
(ft)
---------~
220
315
5,900
------------------e
SL Newcome (2000)
(LF)
Newcome rates test fait
~
:c::1..
!
do.
do.
37W-xl
BRN-469
33"20'30" 81"33'30"
175
200
2,000
do.
doe
do.
Newcome rates test poor
:E
doe
do.
37X-wl
BRN-810
3315'58" 81"32'36"
182
213
2,000
0.0003
do.
do.
do.
Newcome rates test good
...=c :
Cll
do.
do.
37Y-f2
BRN-268
33"13'24" 81"34'54"
360
605
6,700
do.
doe
do.
Newcome rates lest fair
~
do.
do.
37Y-g2
BRN-466
33"13'19~ !W33'06"
262
335
1)00
do.
do.
do.
do.
i
do.
do.
37Y-g3
BRN-465
33"13'20" 1W33'07"
230
374
1,500
do.
do.
do.
do.
do.
do.
38Y-h6
BRN-811
33"1.3'24 81"37'02"
260
270
170
do.
do.
do.
Newcome rates test poor
do. Beaufort 24JJ..c 1
BFI~49
32"19'30" 80"27'37"
96
150
1,900
do.
do.
UF
do.
do.
do.
25HHpl2
Bfl~l566
32"26'15" 80"34'32"
59
66
4,300
do. Aucottand Newcome ( 1986)
do.
Newcome rates test fair
do.
do.
25HH-pl7
BFT-1570
3226'28 80"34'32"
51
59
2,900
do. Newcome (2000)
do.
Newcome rates test good
do.
do.
2SHH-p6
BFT-1560
3226'02" 80"34'56"
50
58
2,500
do.
do.
do.
do.
do.
do.
25ll-e4
BF1~1784
32"24'03" 8034'32"
73
78
5,600
e002
NL
do.
do.
do.
26II-13
BFT-1787
32"22'04" 80"36'36"
64
66 20,000
.000!
do.
do.
do.
Newcome rates test good
do.
Newcome rates test poor
do.
do.
261Is5
BFT-1'788
32"21'59" 8036'10"
55
70 20,000
.0003
do.
do .
do.
do.
26!I-wl6
BFT-Ie793
3220'09" 80"37'36"
90
120 17,000
.0001
do.
do.
do.
do.
do.
Newcome n1tes test good
do.
do.
27HH-n9
BFT-2066
3227'18" 8043'05"
120
170
790
SL
do.
do.
do.
27HH..o3
BFT-114
32"27'52" 8044'26"
83
100
3,600
.00004
NL
do.
do.
do.
27H-!30
BfT-1973
32"22'28" 80"41'37"
52
88 13,000
.0001
SL
do.
do.
Newcome rates test poor
do.
do.
do.
Newcome rates test good
do.
do.
27UI5
BfT-795
32"22'26" 8041 '35"
45
94 15,000
.0003
NL
do.
do.
Newcome rates test fair
do.
do.
27JJ-il0
BFT 2255
3218'25" 80"41'12"
283
603
530
SL SCDNR files
do.
Newcome rates test good
Table AN1, lfansmmsiv1ty and S{ontw; <:O(!ffi<:ient of the Upper and Lower Fk!lldan aquifers and eqHivaler;t dasUc unib;;, 1;o~~st~:l1 Oeotgia
and ad}ac1;>nt parts of South Car<)!lna and Florida--Continued [tt, fnHt.; n"id, fe~t ;:;qtkited per day;'~\., pcn:.:nt; do., ditt<:l; ft!difL t<~inldayi{i.)<)t; ", dt:grce:s; ', mimm~;;; '', ~cwwJs; SJ\VMD, S;, .lohn~ River Water tvbnagm::wni Di;;;r;~t; S, ~;tora~,:w: T. trml$lr!iS$ivity:
USGS, U.S. Gi:~'}logka! SuiT(:::y; SCDNR, Smtth Can:>!iml Depm:nn(:m of Natural Ri;..-svm\:<. State: FL, fh>dda: GA, (korgia; SC, SNlth Carvlin~1. lVkth;,x!: NL, nnnh:.">ky aqulfi.~r anaiy;;;,;;: L, kaky
aq<lit'et ana!y~l~; SC, tr3X!f-n>iss.ivity bM~d on sp!~(:ifk ~apachy; SL stmight line ~malytka! ;;o)wion; V. v;w d<:r Kmnp ana!y$is of <ssciH~lting fh>w (KntS<i'>l11tm ar:d d;;; Ritter, !994}: (h. ar;<;lyt;c,11
nwtllOd not cit~. Hydw!ogk uni~: UF, Uppt."l' Fk!lid;m aquikr; LF, Lower Fbddan tH]Uilb; UF,LL Upper and L<>wer Floridan aquil\::rs; hydrnlogic unit cndow!.l in parcnthC$C~ indkai:~'s a t:!>l~hc
npdip aquik-r ~quivaient B> the c~rhonate Upper N Lo>~w F!oridm1 aqui.fers!
................................. ~~--~~-------------
---..~...........'" ......................."""'"'"""
................................................................................ ~~
___ ..................
-~~~~~-.--_.
B!!!!Ow !and BUrfat'(!
St&~e Cuunfy
'lief! 100nt!11!!!f
-
-
-s-c
Be:1Hfmt
.......~--27JJ.)4
Other identifier
tatlturle
Top of
longltuda open inter11al
!k.tlom lh'!r!S of open m!$shd!y {llh~f'Va! {ff1/d}
Storage
~;:ooffkient
Me1h~d
!Wferem:e
Hydrci-gk; tm!t
A~mark~
(ft}
(ft}
.~-------~---~------------ ................................................. ~----~~-.~---------~
!3VI~l84i)
3Y!E':ZO'' BZl"4!'23"
:'5(l
1,()2
UU(}
SL
Ncwc'.nr:c ~2{}{}~}~
UF
N;;;'w(:orn~' .nlt,;:$ test fair
do
~t--.<.
do.
,.J;.'.
27.H-i9
:nu...q2:
B!:vi~224S
BFJ: tt>u<<
32''HN4'' BZl"4l~JY
~'.':15
3216'\tl'' S\l"4.1'2.Z"
227
f. ~.....( .$.},...
&90
7(\ll ~.. 7tm
<.k>.
<.k>.
<k>.
<k>.
;k:
N<>wco.:~1e ~~~'""' te:s\ g<:x:><l
do.
N,.,,.come rot.~>:> k<:<( iilir
dt}.
<I<.>
27tr.:.K.f12
BFTl%8
3!'' l 3'51'' E004Yi.l0"
!4()
:,>,~W
92,0(l(l
d<>.
<b.
dt:.
Ne~''.:~~me ra.t:::s te?;:t }"X).r.r
do.
;io
2?KK!13
!Wl'l%9
J!"!J'll'' 8(f44'44"
t4ii
226 110llOn
do.
dn.
<k,.
do.
~'~i~!.
do.
Z7KKg l
l:lFP)~5
J2'' l T4l '' ?>fl'43'42"
)42
630
27Jlii(j
:h G~,~ne and ?ark
(lW2)
dfl,
do.
do.
d~~.
27KKlll
BF'I~f,S2
32U'IY W"42'3W
!35
!GO 64-,tltm
d::>. N<.,wwm<.:: {2WJ)
<k>.
~j~)
do.
d<).
2'!KK-.M
m'TI591
.U'! J'31F S{l"42'ti8"
Ul
~'tm
94,0()1)
<k<.
;);;,
dn.
Nev..:c~~n-;_e rat~:.$ t~:::-:t p:.):.:~r
d<.::.
;JF
2'/KK-j)
BFTlin.?<
\~"D':)g' EW4WJ8"
2'Hj
dt'>.
dn.
27KKl12
HFT-21~5
.'52''!2'37'' 8H'41\H" .H4
dt'>.
;k
27KKsn4~
HFf-1632
3:2"12'44" 8(\"41'47''
un
dn.
d<J.
17KK-nl5
HFf-1685
12"12'()7" SW43'32"
ua
::k>.
dtl.
::r!KKA>H!
BfTlE20
32''1?.'!7'' i:<Zl"44'57"
~';I(>
@f.:
(;,{)(:~)
@ij
l~)<{HJO
2(J(j S<'>,tlOO
2H(i 67.tl00
J!(! 11,nnn
:!;;.
do
>.h
do.
dn.
dn.
<.k>.
N~)\"'iCOtt";...;~- rat~:i:> t\:~~ g~;~;d
de.
<k.
<k>.
N".w~:::Jf~.l~ rate:s t:::$t ptxx
::h
dE
do.
Ne;;-:c:-"Jfne ~ti:S t:;.s.t f~:-rr
::1~:..
Ch<wlw and far>.
.h
d<>.
{ !99?.~~ Nf!Wf::J..un~:
(200())
&!.
d::>.
27KK-q.~
IWfl58:1
J2'll'W 8()''43\ll"
!16
lijj$ 5lJ!OO
th:. Newwme (2000)
do.
Nc,vc~)nle r-t'='& tr::\.t pN-,r
d:'i.
d<>.
?.YKK->;il
!:WT758
32~' ~ fr2:Y' 8(1''43':!.~"
tt~
2f)(~
i;":.,(j(j(j
G.GOtll
NL
~h,.
::k>.
N;;;~w<.:(:fn~~ raV~8 tc:$t n~if
*'
d<).
2i'l.L&
!3fTt.i7l
32~'{J9'21"' arf\)43'56'""
145
l2l
~H-<}00
~,.,~.}
dn.
27U...-dl
BFl.~lS%
.>;hw'44" 8{}..).44~ ~ 2~)
J4i.l
l9S i<4.Utl0
SL
ciE
de.
&..
<b.
N-:.:~<:VC~~r:le rat~:~ tft pnH:
:h
<k>.
do.
d;.
Z7Ll.--~d2-
f-.IF'ft947
32~i).:Jl42l(
S~f'44'I2<)
J4ll
1<}t1 'N.ZltlO
::!(>.
~1$.}
:h
<!::>.
.t
do.
d~...
2ilGG.a!O
BrT-!756
JZ"J4'/.iF f>W45'0f,
1.24
214
1,1nn
..{~{}{} i
NL
~Jo
:k
Ncw,;mm: r;ste~; t<.';<! !~ir
~
de.
;l;;,
28GGxl
1Wl~l79U
J2<~(V~j2:r f>W'4!S'Y>"
33
14(1 24/l(l{)
~0{}{}2
d;<.
~].~)
Jn_
N.cw<.~em;, t;Ji.e~; i ~>! p;;;>r
1:13. ~'
t!t'>.
~k:,
2~l{lgi2
HFl'c;'IJl
32.'Ti'22" ilfY4:''5i''
<')()
q}
j ,60!)
SL
~55)
:ln.
N-:::w<:crr~~:: -rate~; "l t~~t fnir
)
~
Table A1. Transmissivity and storage coefficient of the Upper and lower Floridan aquifers and equivalent clastic units, coastal Georgia
Iii
and adjacent parts of South Carolina and Florida--continued
[ft, foot.; ft2/d, feet squared pet day;%, percent; do., ditto; ftld/ft, foot/day/foot; o, degrees;, minutes;", seconds; SJWMD, St. Johns River Water Management District; S, storage; T, transmissivity; USGS, U.S. Geological Survey; SCDNR, South Carolina Department of Natural Resources. State: FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, nonleaky aquifer analysis; L, leaky aquifer analysis; SC, tnmsmissivity based on specific capacity; SL, straight line analytical solution; V, van der Kamp analysis of oscillating flow (Kruseman and de Ritter, 1994); (?), analytical method not cited. Hydrologic unit: UF, Upper Floridan aquifer; LF, Lower Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit enclosed in parentheses it:~dicates a clastic
i
r5r.
updip aquifer equivalent to the carbonate Upper or Lower Floridan aquifersJ
__...........
...................~
Beiow land surface
---.........................
----..
l
l ---
State County
Well
identifier
Other Identifier
sc
Be<~ufort 28HH-t2
BFTll5
Latitude 32"26'15"
Longitude 80"45'36"
Top of
open
Bottom
ofopen
Trane-
mleslvlty (t'Y-Id)
Storage coefficient
Method
interval Interval
Reference
--(-ft-) ------(f-t)-------
72
95
4.000
.000!
NL Newcome (2000)
Hydrologic unit
Remarks
__________ _____ ..................,.. ,
.
UF
Newcome rates test fair
= a
:;.
Cll
:%2
Q ~.
A.
do.
do.
28HH-t7
Dff-22
32"26'18" 80"45'50"
80
84 11.000
.0001
do.
do.
do.
do.
28JJ"e8
BFT-2067
:uJ9'32" 80"49'25"
240
560 15,000
SL
do.
do.
do.
do.
Newcome rates test good
:! c
c::
do.
do.
28JJ-f4
BFT-1630
32"18'27" 80"49'30"
100
200 45,000
0.0004
Nl
do.
do.
do.
.~..
do.
do.
28JJ-b5
Bff-2265
32"18'16" 80"47'45"
397
do.
do.
28JJ-m7
BFT2233
32" 17'31" 8047'37" 393
587 ll,OOO 587 13,000
SL
do.
do.
do.
do.
Newcome rates test fair
do.
Newcome rates test good
!R
;sa.
do.
do.
28JJ-n2
BFT-1389
32"17'03" 80"48'59"
125
192 18,000
do.
do.
do.
Newcome rates test poor
do.
do.
28JJ-p5
BFT-1845
32"16'51" 80"49'17"
255
600
8,800
do.
do.
do.
do.
do.
do.
28JJ.y2
do.
do.
28JJ-y3
Bff499
Bl"f~500
3215'08" 8049'42"
97
32"15'02n 80"49'43"
100
209 56,000 340 58,000
.0002
NL
do.
SL SCDNR files
do.
Newcome rates test good
do.
From a report by C.E. Nuzman to
the BASF Corporation
do.
do.
28JJ-y4
BF!~1326
32"15'09" 80"49'11"
140
200 24,000
do. Newcome (2000)
do.
Newcome rates test poor
do.
do.
28KKd
Bf'l~2229
32" 14'00" 80"48'00"
357
do.
do.
28KK-d6
BFI~l330
n 14'25 so"48'37"
140
568 11.000 174 27,000
do.
do.
do.
do.
do.
Newcome rates test good
do.
Newcome rates test poor
do.
do.
28KK-el
Bff-358
32"14'55" 80"49'44"
101
380 78,000
do. SCDNR files
do.
From a report by C. E. Nuzman to
the BASF Corporation
do.
do.
29Il-s5
BFT-2242
3221'28" 80"51'42"
298
600
4,000
do. Newcome (2000)
do.
Newcome rates test fair
do.
do.
29H-y2
BFT2273
32"20'10" 8054'48"
314
582
5,300
do. SCDNR files
do.
Newcome rates test good
do.
do.
29JJ-d6
BFT-2243
32"19'57" 8053'27"
357
555
4,000
do. Newcome (2000)
do.
Newcome rates test fair
do.
do.
29JJ-ell
BfT-1766
3219'50" 80"54'32"
130
215 53,000
.0003
NL
do.
do.
do.
do.
do.
2911-15
Bff-2222
32"17'08" 80"51'38"
353
490
8,200
SL
do.
do.
do.
do.
do.
29JJ.m2
BH-1452
3217'36" 8052'06"
160
200 23,000
do.
do.
do.
Newcome rates test poor
Tablll!l A-1, Transmissivity and stN;:tge coefiici;:mt of the Upper and Low~u- Floridan aquil~H'::'< <md equiva!~n1t >::lastic units, co>.:~sla! Georgia aM adjacent parts d South Carolina and Florida--Continued
!fl, f;,lot; f(id. leet ~~.Hli"W p>lr i!ay; %>, pw:,:.nt; d<>., d:iuo; it/d!H, n~<Jtiiby/l(>n:.; "", (.k~w.&-s; ',minutes; ", ~i<Xomls; SJWMD, S;. J<:>tms f{i~~~r W:;,kr\lan;:gcrw~~nt Di>.trki; S, ~>t<>mge; T. trammi%idty:.
USGS, U.S- G<..'l)k>gicill Sn:rvcy; SCDNR, Seuth C:rroHna De:p:mr.h:::lt nf Na!um1 R~>mtrccs. St3te: FL, Florid;>; Gi\, G(\1rgi:r_ SC, Sl>uth Canihr:<i..Md!llxl; 'NL, nzmkaky aquiH~r analysis~ L, !ei:ky :lqiJiter analysis; SC, transmi;;:->irity bil~?-illl <m :;pccilk 1:apadty; SL, stmigilt !ine: analytiiO<ll s<:>btion; V, van der Kamp a.ndy:>is <>f oscillating thw (Krus(:m;m and ;,k Ritter. !994); ('?), mdytka! melh(!d nm dt<;.'X!. Hydrdogl~ unit: UF, UpJWr fhidan i!<!Hlkr; LF, i..wer Floridan ;3.quikr; UF,LF, Uprx~r and Low"'r Fk>ridan aqnifcr;;; hydfi)!ogk nni: <:n(:!l>sed in p:;,n.mtb~;;e;; indita:e~; a da;~tk
updip <\tpHh <~qnivalcnt to the wrbmmk Uppt::t {\!" L!)\V<;< Fk>tidan ilql.;itietsj
--".............
................,,
.......................
"'"
...............,...
Ekli('>W land surfa~e
~
...................... ~~--
State C!3U!'ll:y
sc Heuufort
WM! idennfter
01har ldentmer
''--...... BVI~22il2
Latitude l.()ngttude
. ..,..,...,.,...............,. ,..........
.~2"!7'.52" !W"H'lif'
Top of open
Botteym
ofop~m
Ttl.l!I'!IS<* mis~S<ivity
Storage
r:oeffleient
M$thocl
___ lnterv~! in1erva! {ft2fd}
(ft)
(tt}
"................
. .........................
......................
Referenc0c
HydfOioglc !.ll'lit
" .........................-~--
Rem~trks
J5!
Si>S
J,.W\l
SL
N:;;~w<;fH.~<.::~ {2P~X~)
tiF'
Nl:':"r'~/(~~)n~~< r.;~x~-; ~<=:~i ~\<i:~d
Jo.
dt1.
19ll-<:j2
flrT!4lS
J::r' H/)71\ S()~S3'0?'~
l6tl
1{}(f :/.J,Oi.ltl
dn.
;.k.
do,
N;:;,r.orxsfne. f'&tes te~t p::..l:.:tt
;15;,
tk,.
29J.I-1'2
BFl'-l!:M1
lYl:?~~x i!iF5l'47"
!40
2.U5
J})/~0{}
J.).
d~"!.
d(>.
Newc~:mle rat~::s test. Q:l.>~:-cl
d<)
dt>.
2'f1J.v)
BFrc.2:.1.64
32~l)\:~:JX
Si/'~lriT"
356
576 l il,OOiJ
J:..,.
d\).
:ln.
<k),
d<:>.
du
29KK.._q:l
HfT!S{()
:lrl4'54" 80"50'27'
4:5
1()5
.~(!,iliJO
dt1.
d5.'
<k
N:;w~x.rn~:- r2fe?: t~;f i_:;_tr
(k>-
de.
29LL-j4
BrT3il9
.U0 t)i!'l5'" 80"'50'5!:<:"
!40
<..1f,.
de.
2<)LIA;:6
Bf'l~224l
32t.{}T52< 8(f5tY4-~i_.,:
44!
242 4fl.OOO
(j]i$
!.~.(}00
(h SCDNRfik;;
d<.
Ncwt'<.>m<~ i2()(JO)
do.
N<:>~f,m<: raic> t<~.;! jXl<X
do.
N>~\1-\'\;me rate~ tl'"' e>:e<.":llent
d~3.
tk.
.NLLH
HFT:J!G
yz::i5T53~'
8~)0 ) j'l)(l<
!25
l<f2
~tl.HO<}
\l.("Kl!
NL
d::>,
.do..
:'k:)N()..fnn:: r:~t~:K t~st rx:>::>f
d>.."r,
dt'.
2<!1..!.-t'
HFT-l4?<il
J!."iY!'~;6" j${)"5) '4! <
H!7
140
?..3\!f)
ds.r
df>.
19f..t...~~
HIT!794
n"06'2l'' fi(i"51'43'"
I7H
240
4()Ji(")
d<.>
dt>.
.J(iJJ-k!
Bvrc~~tns
JZ"'l ?"09"' ~(l"55T!''
-~-39
z:w
4~~.\)<XI
ilL
d(>.
<.k>.
d(!,
do,
d>:.
d'"'
do.
do. d<:>.
,;b_
Nc..,...,..._"':u:Jf: t~C?~ k-st f~h-
C.o.
do
~~t)JJ..!l
BFT-:Otl9U
31~1'7"2>'' t~tr'.~6'5S''
-~46
~20
6,!)<.>(l
<!;),
di;
o..k1,
Ne-wr:;.~r:v~ t~nc~ t~~: ~~A~>.::~lent
do.
dF
~WJJ..ml
BFT-103~:}
31'"1'7"22"' t\U''.~T1:2''
31!
)23
4,4i}(l
d(>,
do
J:..,.
. . . r-.:~~ ~~t..n~;z nlif:~ :.1;':'-).t pO<)f
0<).
do
JOH-n!
l3H1156
37..:.:_--;~":~~ B0<-'l5S'54'}
H6
~!2
.1.,JOU
:1r:.
d<.).
de.
N<.":w;:;:.;.ll<' mh~S tesi fait
c.ln.
do.
301.ll2
BfT2HS6
32-:;1-sls~~(
3o<ss:~;_.,
299
45U
?;20f}
;}).
df>.
\k-.
dn.
d.(
(),,!k~CI)
27DD-hl
CO!...:n5
?<2"49'28" 1>0''4-l':'{>"
!25
575
Z~HJ
dt).
df.<.
LF
N~;':WC<)ffW rat~~ r~::st rx~~1r
d<)
de.
3ilA/"d
cm. .n2
3Y'i.W02" 80''5 7' i 4 X
45H
51(;
2/KliJ
:.lt).
d(<.
tkr
dr,.
do. Hamptm.:. ncr.:..!J.5
HAMl.!>2
}2''52'.!3"' ~(l''i.i6'5<Y
~{(;
!11)
1..2'-!iJ
.o~m
NL
d:.<.
ur
New~om;: E<t<''i l<;:>:t f:li.:'
de.
d0.
.'<?<CC.p2
Ht\M2f>9
32~s t~3s} !H''I4'U"
~1f~.
{k.
JJCC-p)
HAM-219
3?-"S l':>-t a;"l4'JO''
H}2
ns
~- ~'(_f(j
lS(J
fi.WG
SL
d:-:<.
d.;_(
Nl;':.;,",\~Ofl:i: Ei.~~~, ~-'=~~t JJf.H){
>
!1n.
J,).
<.k>
t<!~wwn;;; h'te> l.<.'=:;t !Mr
~
1
~
),'1'
>
,;,. >
Table A1. Transmissivity and storage coeffident of the Upper and Lower Floridan aquifers and equivalent clastic units, coastal Georgia
g
and adjacent parts of South Carolina and Florida---Continued
[ft,
foot;
ft2/d,
feet
squared
per day;%,
percent;
do.,
ditto;
ft/d!ft,
foot/day/foot;
0 ,
degrees;',
minutes;
",seconds;
SJWMD,
St.
Johns
River
Water
Management
District;
S,
storage;
T,
transmissivity;
USGS, U.S. Geological Survey; SCDNR, South Carolina Department of Natural Resources. State: FL, Florida; GA, Georgia; SC, South Carolina. Method: NL, nonleaky aquifer analysis; L, leaky
aquifer analysis; SC, transmissivity based on specific capacity; SL. straight line analytical solution; V, van der Kamp analysis of oscillating flow (Kruseman and de Ritter, 1994); (?),analytical
i ;
IC:
method not cited. Hydrologic unit: UF, Upper Floridan aquifer; LF, Lower Floridan aquifer; UF,LF, Upper and Lower Floridan aquifers; hydrologic unit enclosed in parentheses indicates a clastic
5'
updip aquifer equivalent to the carbonate Upper or Lower Floridan aquitersJ
a ~
<-----------------------"'----
---------------------~
Below land surface
-------------~----
~.-<>----------~
"c=o
~
State County
Well Identifier
Other identifier
latitude
Top of Bottom Trans ---------------------~-
longitude
open interval
of open interval
missivlty (ft~/d)
Storage coefficient
Method
Reference
Hydrologic unit
Remarks
i"
....Ill
Cl
f
(ft)
sc
Hampton
---------------------------------------------------
33EE-c4
HAM-195
3244'52" 8112'32"
131
(ft) 251
----~--.-----~--~~---------------------------------
12.000
.0002
NL Whiting and Park
UF
--------------
Newcome rates test good
.a:C.l.l;!
(1990); Newcome (2000)
=Ill
do.
do.
33EH2
HAM-211
3244'58" 81!4'15"
125
160 11,000
SL Newcome (2000)
do.
do.
~ =
do.
do.
33EE-v3
HAM-208
32"40'51" 81"11'18"
145
280
.3,300
do.
do.
do.
Newcome rates test fair
t...i
do.
Jasper
2911-o l
JAS-!04
3222'11" 8054'51"
145
330 47,000
0004
do. Aucottand Newcome ( 1986)
do.
Newcome rates test good
!R
s ~
do.
do.
JOHH-ol
JAS-346
3227'59" 80"59'36"
130
220 39.000
do. Newcome (2000)
do.
Newcome rates test poor
do.
do.
3!GG-o3
JAS-390
32"32'05" 81 04'30"
240
500 51,000
do.
do.
do.
Newcome rates test good
do.
do.
31GG-p5
JAS-389
32:"31 '48" 81 04'23"
140
300 51.000
0.0004
Nl
do.
do.
do.
do.
do.
31GG-x5
JAS-384
32".30'07" 81"03'32"
115
180 48.000
SL
do.
do.
Newcome rates test poor
do.
do.
31HH-b3
JAS-375
32"29'08" 8101'49"
118
220 53.000
do.
do.
do.
Ncwcomc rates test fair
do.
do.
31HH-m3
JAS-386
3227'53" 81"02'45"
118
220 36,000
do.
do.
do.
Newcome rates test good
do.
do.
31Jj..tl
JAS-342
32"16'19" 8!"05'00''
208
400 67.000
do.
do.
do.
Newcome rates test poor
do.
do.
32GG-ni
JAS-391
3232'59" 81"08'17"
252
545 57.000
do.
do.
do.
Newcome rates test fair
do.
do.
32GG-n2
JAS-392
32"32'35" 8108'08"
252
555 46.000
do.
do.
do.
Newcome rates test excellent
do
do
32HH-s2
JAS-372
32"26'48" 81"06'08"
142
204 35,000
do.
do.
do.
Newcome rates test poor
"a'A~~;rding.to Sp~hler ( 1994 ), muiti-aquifer wells c;~pi~t~d;~--;t;; Upper and Lower Floridan aq~if~;;;~i);;~;ilc~unty, Florida, probably deri;~-;;;~~h"ZTtheir.yield from the lower Florida aquif~~..........-~-~--
THE DEPARTMENT OF NATURAL RESOURCES IS AN EQUAL OPPORTUNITY EMPLOYER AND OFFERS
ALL PERSONS THE OPPORTUNITY TO COMPETE AND PARTICIPATE IN EACH AREA OF DNR
EMPLOYMENT REGARDLESS OF RACE, COLOR, RELIGION, SEX, NATIONAL ORIGIN, AGE, HANDICAP,
OR OTHER NON-MERIT FACTORS.