Determination of Georgia DOT design inputs for mechanistic-empirical pavement design

FINAL REPORT
Determination of Georgia DOT Design Inputs For MechanisticEmpirical Pavement Design
by Donald E. Watson, Research Engineer Jason R. Moore, Laboratory Manager National Center for Asphalt Technology
277 Technology Parkway Auburn University, Auburn, Alabama 36830
Phone: (334) 844-6228 Fax: (334) 844-6248 and
Peter Wu, Ph.D., P.E., Assistant State Materials and Research Engineer
David Jared, P.E., Special Research Engineer Georgia Department of Transportation 15 Kennedy Drive Forest Park, Georgia 30297-2534 Phone: (404) 363-7500 Fax: (404) 363-7684
October, 2008
277 Technology Parkway Auburn, AL 36830
,..

Determination of Georgia DOT Design Inputs For Mechanistic-Empirical Pavement Design
Final Report
Submitted to the Georgia Department of Transportation
by
Donald E. Watson, Research Engineer Jason R. Moore, Laboratory Manager National Center for Asphalt Technology
277 Technology Parkway Auburn University, Auburn, Alabama 36830
Phone: (334) 844-6228 Fax: (334) 844-6248
and
Peter Wu, Ph.D., P.E., Assistant State Materials and Research Engineer David Jared, P.E., Special Research Engineer Georgia Department of Transportation 15 Kennedy Drive Forest Park, Georgia 30297-2534 Phone: (404) 363-7500 Fax: (404) 363-7684
October, 2008

TECHNICAL REPORT STANDARD TITLE PAGE

l.Report No.: FHWA-GA-08-0621

2. Government Accession No.:

3. Recipient's Catalog No. :

4. Title and Subtitle:
Determination of Georgia DOT Design Inputs For Mechanistic-Empirical Pavement Design

5. Report Date: October 2008
6. Performing Organization Code:

7. Author(s): Donald E. Watson, Jason R. Moore, Peter Wu, David Jared

8. Performing Organ. Report No.: 0621

9. Perfonning Organization Name and Address: National Center for Asphalt Technology Auburn University 277 Technology Parkway Auburn, AL 36830
12. Sponsoring Agency N arne and Address: Georgia Department of Transportation Office ofMaterials & Research 15 Kennedy Drive Forest Park, GA 30297-2534

10. Work Unit No.:
11. Contract or Grant No.: SPR00-0007-00(993)
13. Type ofReport and Period Covered: Final; November, 2006- August, 2008
14. Sponsoring Agency Code:

15. Supplementary Notes: Prepared in cooperation with the U.S. Department of Transportation, Federal Highway Administration.
16. Abstract: The objective of this research is fourfold: (1) measure the dynamic modulus of commonly used Superpave and
SMA mixes, (2) measure the resilient modulus values of typical soils and aggregate base courses, (3) compare the measured moduli with default moduli from M-EPDG for a range of subgrade and aggregate base material, and (4) evaluate the sensitivity of the M-EPDG and the PerRoad Perpetual Pavement Design Software to changes in the HMA moduli. A comparison was also made using the AASHTO 1972 Design Guide currently being used by GDOT to determine differences in required structure for proposed new construction. Conclusions and recommendations from the research are:

1. The M-EPDG level3 default values for resilient modulus of both soil and aggregate materials are significantly higher than the actual values determined from laboratory test results.
2. Use of actual materials properties and load spectra resulted in significantly greater structures being recommended than when default values were used for the M-EPDG design program. As a result, GDOT is cautioned against using the default values built into the M-EPDG software.
3. The dynamic modulus test may not accurately capture the improved performance experienced with polymer-modified Superpave and SMA mixtures. For this reason it is recommended that the same structural layer coefficient as for unmodified mixtures be used for SMA and polymer-modified Superpave mixes until further study is conducted regarding the benefits of polymer modifiers.
4. A design could not be determined at 90% reliability for one of the scenarios of this study. This revealed a limitation of the software and indicates that 50% reliability may be more practical for HMA mixtures.

17. Key Words: Pavement design, Mechanistic-Empirical, M-EPDG, PerRoad,

18. Distribution Statement:

19. Security Classification (ofthis report): Unclassified

20. Security Classification
(of this page): Unclassified

21. Number ofPages: 19

22. Price:

Form DOT 1700.7 (8-69) 1

TABLE OF CONTENTS
Executive Summary ...................................................................................................... v Introduction and Problem Statement .......................................... .................................. 1
Project Objectives ................................................................................................ 3 Scope ..................................................... ...... ..... .................................................... 3 Experimental Plan ............................................. ... .. .......................... .... .... ............. ....... . 3 Soil Subgrade ........................................................................................................ 3 Aggregate Base Course .................................................................................. ...... 4 Hot Mix Asphalt ........................................................... ..... .. ................................ 4 Pavement Structure ............................................................................................... 5 Data Results and Analysis .............................................. ..... .... ........ ............................. 6 Weather ................................................................................................................ 6 Traffic ........... ;.................................................. ....... ................ .. ........................... 6 Subgrade ............................................................................................................ 10 Aggregate Base Course ...................................................................................... 13 Asphalt Mixtures .. ... ... ... .. .. .. .. .... ..... .. .. ... ... .. ........ ..... .... .... .. .. .... .. .. ... ..... ...... .. ....... 14 Pavement Design .... .. .. .. .. .. .... .. .. ..... .... ... ... ........ .. ... .... .. .. ...... .... .... ....... .. ..... .. ... .... 15 Conclusions and Recommendations ........................................................................... 20 Acknowledgements ............................................................................................... ...... 21 References .......... ....... ................................................. .. .... ....... ... ................................. 21 Appendix .................................. .. .... ..... ... ........................................... .......................... 22
11

LIST OF TABLES TABLE 1 Combination of Mixtures in This Study ........................................................... 5 TABLE 2 GDOT 18 Kip Axle Equivalents ..................................................................... 10 TABLE 3 Subgrade Properties ................ ............ .... .... .. .. .. .. .. .... .. .. .. .. ... .... ..... .. ...... .... ..... 11 TABLE 4 Subgrade k Values .................................................................... ................... .... 11 TABLE 5 M-EPDG Default and Actual Mr Values For Georgia Soils .......................... 13 TABLE 6 Default and Actual Mr Values and k Values for Aggregate Base .................. 13 TABLE 7 Dynamic Modulus Results for a Variety ofGDOT Mixtures (70F, 10Hz) ... 15 TABLE 8 Recommended Pavement Structure for Minor Rural Arterial .. .. .... .. .. ..... .... . 19 TABLE 9 Recommended Pavement Structure for Rural Principal Arterial .... .. ............ 19 TABLE 10 Recommended Pavement Structure for Urban Principal Intersta~e ............. 19
iii

LIST OF FIGURES FIGURE 1 Pavement Models ......................................................................................... 2 FIGURE 2 Typical Pavement Design Structure ............................................................... 6 FIGURE 3 FHWA Vehicle Classes ................................................................................. 8 FIGURE 4 Urban Interstate Vehicle Distribution ........ .......... ........... .............................. 9 FIGURE 5 Growth in Distribution of Class 9 Vehicles on Urban Interstates ............... 10 FIGURE 6 Comparison of Measured to Predicted Mr for Coastal Subgrade Sample .. 12 FIGURE 7 Example of Mixture Dynamic Modulus Master Curve ............................... 14 FIGURE 8 M-EPDG Prediction of Rutting for Urban Interstate Design with
41.5 Inches of Asphalt and 12 Inches of Aggregate Base ......................... 17 FIGURE 9 M-EPDG Prediction of Rutting for ~DOT Urban Interstate Design ......... 18
/
IV

EXECUTIVE SUMMARY
The Georgia Department of Transportation (GDOT) uses the AASHTO Interim Guide for Pavement Design, 1972 Edition, as a basis for its current pavement design program. This design method uses some of the information from the AASHO Road Test which began in 1956 and was completed in 1961. As a result, the AASHTO design method is based on conditions that existed in the 1950's and is irrelevant for many of today's traffic conditions. The AASHO Road Test was also limited to only one subgrade type, was conducted under one environmental condition, did not have any triple axle configurations, and the truck traffic was limited to loading conditions of two million Equivalent Single Axle Loads (ESALs). That means data from the AASHO Road Test has to be extrapolated several orders of magnitude beyond the original loading conditions for the current day traffic environment.
The objectives of this research are fourfold: (1) measure the dynamic modulus of commonly used Supe!~Jave and SMA mixes, (2) measure the resilient modulus (Mr) values of two soils and aggregate base courses, (3) compare the measured moduli with default moduli from M-EPDG for subgrade and aggregate base material, and (4) evaluate the sensitivity of the M-EPDG software to changes in the HMA moduli. A comparison was also made using the PerRoad Perpetual Pavement Design software and the AASHTO 1972 Design Guide currently being used by GDOT to determine differences in required structure for proposed new construction.
In order to evaluate the effect of various pavement design methods, it was decided to consider three traffic functional classifications: an urban principal arterial interstate (6 lanes), a four-lane rural principal arterial highway, and a low volume rural minor arterial highway. To evaluate the effect of various soil and aggregate bases on the pavement design output, GDOT furnished a typical limestone and granite aggregate used in base courses, and two soil types. The effect of hot mix asphalt (HMA) properties was also considered by using three different mix types, three aggregate sources, and two asphalt binder grades.
Based on test results of materials and other data used in this study, the following conclusions are made.
1. The default values for resilient modulus of both soil and aggregate materials are significantly higher than the actual values determined from laboratory test results. As a result, the required pavement structure using M-EPDG default values versus actual materials properties and traffic loading values showed that significantly more structure was needed when actual values were used. Therefore, GDOT is cautioned against using the default values built into the M-EPDG software.
2. The dynamic modulus test may not accurately capture the improved performance experienced with polymer-modified Superpave and SMA mixtures. Therefore, the same structural layer coefficient should be used for SMA and polymer-modified Superpave mixes as for unmodified mixtures until further study is done for validation.
3. GDOT should use the 1972 AASHTO design procedure until the M-EPDG is further validated on the state level. However, pavements may be underdesigned since the software has not been updated for changes in traffic conditions.
Keywords: Mechanistic-empirical, dynamic modulus, resilient modulus
v

DISCLAIMER The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Georgia Department of Transportation, the Federal Highway Administration or the National Center for Asphalt Technology. This report does not constitute a standard, specification, or regulation.
Vl

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
Determination of Georgia DOT Design Inputs For Mechanistic-Empirical Pavement Design
INTRODUCTION AND PROBLEM STATEMENT
The Georgia Department of Transportation (GDOT) uses the AASHTO Interim Guide for Pavement Design, 1972 Edition, as a basis for its current pavement design program. This design method uses some of the information from the AASHO Road Test which began in 1956 and was completed in 1961. As a result, the AASHTO design method is based on conditions that existed in the 1950's and is irrelevant for many of today's traffic conditions. The AASHO Road Test was also limited to only one subgrade type. A study in 1991 that considered the difference in subgrade modulus concluded that laboratory resilient modulus (MR) values on cohesive soils conducted at deviator stresses and confining pressures expected below the completed pavement will result in unconservative MR values when used in the 1986 AASHTO design guide (1).
The AASHO Road Test was also conducted under one environmental condition. For that reason, regional factors were used to compensate for the anticipated difference in environmental effects. Research conducted at the National Center for Asphalt Technology (NCAT) Test Track has indicated that it is important to develop rutting and fatigue transfer functions that represent the environmental conditions of the pavement structure and the performance of that pavement. The NCAT research also pointed out that separate fatigue transfer functions were needed for thick and thin pavement sections (2).
Along with significant increases in truck traffic, there has been a shift from the use of biasply tires to radial tires. The bias-ply tires used at the AASHO track which had typical air pressures of 70-80 psi where today's radial tires may have pressures of 120 psi or higher. The trucking industry is even using "super single" wide-based tires (to replace dual tires) that will add even greater stress to the pavement. In addition, the AASHO test did not have any triple axle configurations, and the truck traffic was limited to loading conditions of two million Equivalent Single Axle Loads (ESALs). In contrast, Interstate highway I-85 in northeast Georgia (which is one of the most heavily used truck routes in Georgia) carries more than 20 million ESALs over its 20 year design life. That means data from the AASHO Road Test has to be extrapolated several orders of magnitude beyond the original loading conditions for the current traffic environment.
With the AASHTO design procedure, it is possible to set the pavement thickness and make up the remainder of the required structural number with an aggregate base course. However, Figure 1 shows that the main stresses that must be accounted for in a pavement design are the vertical strain at the top of the subgrade (to resist rutting) and the tensile strain at the bottom of the asphalt layer (to resist cracking). If the asphalt layer is not thick enough to withstand the tensile strain at the bottom of the layer, it will begin cracking at the bottom of the layer and rapidly propagate to the surface.
The beta version of the Mechanistic-Empirical Pavement Design Guide (M-EPDG), was essentially completed in February 2004. In addition, analysis techniques have been developed
1

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
by the National Asphalt Pavement Association (NAPA) for perpetual pavements. Both of these design systems use mechanistic-empirical (M-E) analyses that require modulus values for the various pavement layers. For hot mix asphalt (HMA), the dynamic modulus can be determined using testing protocols developed as part of NCHRP 9-19. This testing is complicated and requires servo-hydraulic or servo-pneumatic loading equipment, environmental chamber, and triaxial cell.
HMA
Aggregate Base
Sub grade
FIGURE 1 Pavement Models. Dynamic modulus values can be estimated in the Level III M-EPDG using the following inputs: Gradation PG Binder Grade Effective Binder Content (by volume) AirVoids Compacted unit weight (at Nnesign)
These values would be more readily available to state agencies. However, properties such as gradation, effective binder content and compacted unit weight will most likely not be available at the time of the pavement design since it is unlikely that a contract will have been awarded and a mix design approved. Agencies ma:y elect to determine typical ranges available for a region (district or division) of the state. Therefore, agencies need to know how variable the moduli are for various asphalt mixes typically used by the agency and how sensitive the MEPDG analyses are to the dynamic moduli.
2

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
PROJECT OBJECTIVES
The purpose of this project was fourfold: 1. To measure the dynamic modulus of commonly used Superpave and SMA mixes in order to develop typical ranges for asphalt mixtures used by Georgia DOT, 2. To measure the resilient modulus values of two soils and aggregate base courses used in Georgia, 3. To compare the measured moduli with moduli calculated as part of the M-EPDG using commonly available material properties, 4. To evaluate the sensitivity of the M-EPDG Software to changes in the HMA moduli for a given pavement structure. A comparison was also made using the PerRoad Perpetual Pavement Design software and the AASHTO 1972 Design Guide currently being used by GDOT to determine differences in required structure for proposed new construction.
SCOPE
In order to evaluate the effect of various pavement design methods, it was decided to consider three traffic functional classifications: an urban principal arterial interstate (6 lanes), a four-lane rural principal arterial highway, and a low volume rural minor arterial highway. Traffic classification and load distribution data is furnished to the Federal Highway Administration (FHWA) and is processed through a computer software program for Vehicle Travel Information System (VTRIS). Both the load distribution data determined from the VTRIS database, and default spectra from the M-EPDG were used to determine the effect of using historical traffic data as compared to default values in the pavement design software.
To evaluate the effect of various soil and aggregate bases on the pavement design output, GDOT furnished a typical limestone and granite aggregate used in base courses. Two soil types including one soil with a high soil support value and one with a low soil support value were also provided by GDOT.
The effect of hot mix asphalt (HMA) properties was considered by using a 25mm Superpave base mixture, 19mm Superpave intermediate course mixture, and a 12.5mm Superpave surface course. For comparison of surface mix types, both 12.5mm Superpave and 12.5mm SMA mixes were evaluated. To consider the effects of asphalt binder modification, both the standard, unmodified PG 67-22 and a styrene-butadiene-styrene (SBS) polymer modified PG 76-22 were used in the Superpave surface mixes. Since SMA mixes use the PG 76-22 binder, those mixes were compared to the Superpave surface mixes that also used PG 76-22 binder.
EXPERIMENTAL PLAN
Soil Subgrade
Georgia soils were tested in order to determine typical ranges in subgrade modulus values for the M-EPDG input. To accomplish this task, GDOT furnished two different soil types. One was a GDOT Class IA-2 soil (AASHTO A-2-4) from the Coastal Plain region (Pierce County) that had
3

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
a soil support value (SSV), of 6.0. The other soil was classified as GDOT IIIC4 from the Piedmont Region (Paulding County) and had a SSV of 1.3. Georgia does not use the AASHTO soil classification system because it does not give as much consideration as GDOT would like for the reduction in strength some soils with high mica content have. For that reason, the GDOT classification of the Piedmont soil does not relate to a specific AASHTO classification. The soil properties fall into the classification of AASHTO A-2-7 based on sieve analysis, but if the material is to be used based only on resilient modulus for the M-EPDG designs, the soil would be better classified as A-7-6. These two soils were used because they represent an extreme from high to low regarding SSV that may give an idea how sensitive the M-EPDG software is to actual resilient modulus values.
In actual design practice, GDOT uses 4.5 as a maximum SSV so that overly thin pavement sections are not designed. Subgrade with SSV=l.3 would also not be used without some type of stabilization (or undercutting the soil and replacing it with additional aggregate base). However, the two soils were used in this study to evaluate the sensitivity of the M-EPDG design procedure to such extreme values and determine if there may be some limitations of the software that have not been known previously. Design results using the high and low values were compared to designs where the default values were used to determine differences in predicted performance and the resulting difference it would make on the designed pavement structure.
Aggregate Base Course
Two aggregate base types, limestone and granite, were used that represent a typical gradation of graded aggregate base used in Georgia. The granite material was from Vulcan Materials at Lithia Springs and had a maximum modified proctor density of 135.4 lb/ft3 at optimum moisture content of 5.5%. The limestone aggregate was from Vulcan Materials at Dalton, Georgia and had a maximum modified proctor density of 141.8 lb/ft3 at 5.9% optimum moisture. Samples of the aggregate base courses were compacted at the optimum moisture and density levels in order to conduct resilient modulus tests.
Hot Mix Asphalt
A laboratory mix design was conducted for ten mixes including one surface, one intermediate, and one base mix. A range of commonly used aggregate types, asphalt binder grades, mix gradations, and mix types -Superpave and Stone Matrix Asphalt (SMA) - were tested in this study (Table 1). Since Georgia uses two main aggregate types, limestone and granite, this research plan included a Superpave base and intermediate HMA mixture with both granite and limestone materials. In addition, granite from two sources (with unmodified binder) was used for comparison between granite materials used in HMA surface mixes. Vulcan Materials at Lithia Springs and Martin/Marietta at Ruby, Georgia (Macon) were the granite sources of aggregate and Vulcan Materials at Dalton, Georgia was the limestone aggregate source. In addition, a polymer modified 12.5mm Superpave and 12.5mm SMA surface mix with granite aggregate was included. This allowed a comparison of the effect of aggregate for three typical mix types. For the surface mixes, the combination of materials and mix types used allowed an evaluation of the
4

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
effect of modified binders and a comparison between Superpave and SMA mixes.

TABLE 1 Combination ofMixtures Used in this Study

Aggregate Source Vulcan@ Lithia Springs

12.5mm Superpave (PG 67-22)
X

12.5 mm Superpave (PG 76-22)
X

12.5 mm SMA
(PG 76-22)
X

19mm Superpave (PG 67-22)
X

25mm Superpave (PG 67-22)
X

Martin-Marietta @ Ruby

X

X

X

Vulcan @Dalton

X

X

NCAT performed a Superpave mix design for each of the mix types used in order to determine the optimum asphalt content, gradation, and volumetric properties at 65 gyrations which is the design gyration level (Nnesign) used by GDOT in all their Superpave mixes. An exception was that the 50-blow Marshall compaction procedure was used for the SMA designs in order to be consistent with GDOT SMA mix design practices.
Dynamic modulus testing for each mix was performed according to NCHRP 9-19 protocol. Dynamic modulus testing was performed at six frequencies; 0.1, 0.5, 1.0, 5, 10 and 25
Hz; and five temperatures; 14, 40, 70, 100 and l30F to allow the development of a master curve that could be used for seasonal modulus determinations.

Pavement Structure

A pavement structure was determined for each of the materials used in this study and several comparisons were made. A typical illustration of what the pavement structure may look like is shown in Figure 2. In the actual design process, the thickness of the 25mm HMA Base mix and the thickness of the aggregate base course are adjusted as needed to meet the required structure that will withstand the estimated traffic loading over the design life of the pavement.
One of the assumptions a designer makes is for the traffic growth factor. Typically, a three to four percent growth rate in overall traffic is used for the growth factor. For this study, a four percent growth rate over a 20-year design life was used during the design calculations. It was also assumed that traffic growth would be constant between all traffic categories and vehicle types.

5

Watson, D.E., J.R. Moore, D. Jared, and P. Wu

Low Volume

Medium Volume

High Volume

FIGURE 2 Typical pavement design structure based on traffic volume.
DATA RESULTS AND ANALYSIS
Weather
Since weather and other environmental factors will have an effect on long-term pavement performance, it is useful to consider those effects in the pavement design process. The M-EPDG design procedure uses moisture and temperature profiles that are predicted through the Enhanced Integrated Climatic Model (EICM) module integrated into the software. The climatic effects can be dramatic. In the M-EPDG manual for example, the recommended resilient modulus for A-2-4 soil is 42,500 psi, but the default value after climatic effects are considered through the ICM feature is only 21,500 psi. For this study, weather information was used based on data from the Hartsfield-Jackson International Airport in Atlanta, Georgia. It was also assumed that pavement construction would be completed in July and that the constructed pavement would be immediately opened to traffic. This assumption should give a worst-case scenario when considering the rutting effect on pavement performance.
Traffic
One of the problems encountered on this project was to obtain accurate traffic data to use as inputs for load spectra in the pavement design software. In years past this data was kept by
6

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
GDOT and used periodically to update the load distribution factors and Equivalent Single Axle Load (ESAL) values for various functional classifications on the highway network. Although GDOT no longer analyzes this data for pavement design, it is still collected and furnished to the Federal Highway Administration (FHWA).
The Vehicle Travel Information System (VTRIS) database where this information is stored was reviewed for this study and it was found that the 2007 truck traffic count information reported for Georgia's highway system was inaccurate. Therefore, the data for 2006 was also evaluated. In order to verify the data, W-4 tables from Alabama and Florida were also checked and it was found that all three states reported similar truck traffic by functional class for each of the vehicle reporting types. Based on this verification, it was determined that the 2006 reported truck traffic data appeared to be accurate and was therefore used in this study.
The VTRIS data is also not in a form that can be copied directly into either the M-EPDG or PerRoad software, so some interpretation and data calculations are needed. For example, the PerRoad design software allows load input on the steering axle of trucks, but there is no specific data in the VTRIS database itemized as being just for steering axles. In order to determine these values, the FHWA vehicle Class 9 was used. Class 9 is a vehicle configuration with 5 axles and includes two sets of tandem axles. Therefore, the only single axle is the steering axle. This enabled the steering axle load to be determined by using the VTRIS table for single axles in a Class 9 configuration. Figure 3 shows the various vehicle classifications. Class 1 (motorcycles), Class 2 (passenger automobiles), and Class 3 vehicles (pick-ups and small delivery trucks) are considered lightweight and are not used in the axle load distribution tables.
The M-EPDG software has Level 3 default values for vehicle traffic distribution in case the designer does not have that information. Level 1 design analysis allows a designer to input state-specific traffic data if it is available. The default values are general values for an average of traffic combinations from across the country. However, the values may be greatly different than the actual data from state specific reports for each highway functional class. For example, Figure 4 shows the default percent distribution for Class 9 vehicles on an urban interstate is 42 percent while the actual data reported by GDOT shows Class 9 vehicles make up about 60 percent of the truck traffic for several of the functional classes of highways in Georgia (60% for Urban Primary Arterial Interstate, 62% for Rural Primary Arterial (4 lane), and 61% for Minor Rural Arterial). The PerRoad software also has default values for load spectra and shows about 45% Class 9 vehicles on an urban interstate, 48% on a rural primary route, and 41% on a rural minor arterial. For this study, the GDOT values were used in the GDOT, PerRoad, and M-EPDG Level 1 calculations while the default traffic configuration was used in the M-EPDG Level 3 analysis.
7

Watson, D.E., J.R. Moore, D. Jared, and P. Wu

FHWA Vehicle Class

Axle Configuration

Description

Class 4

Bus

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

Single Unit, 2 axles, 6 tires

Single Unit, 3 axles

Single Unit, 4 axles or more

Standard Tractor 4 axles or less

Trailer'

Standard Tractor Trailer, 5 axles
Standard Tractor Trailer,
6 axles or more

Multi-unit Tractor 5 axles or less

Trailer'

Multi-unit 6 axles

Tractor

Trailer '

Multi-unit Tractor 7 axles or more

Trailer '

FIGURE 3 FHWA Vehicle Classes.

8

Watson, D.E., J.R. Moore, D. Jared, and P. Wu

!EJ I I [!) Mortt'l)~<lju,;n,.rt [1] V~hlda oa, [)s::~lon

Houriy Dist..'b.Jtion El Traffle Gro...Ul Factors

~\.l~ ~lln~ 04-It~

-

AADTT dl~bulicn b't vetid~ d~ss

o ~n: ..s

r- ~

o~:~ ,s 5
'
Cla!l:. lii

rm- ~
141~ u

rLood Dol~ O.strou!~ ---~
r Levell : ~~ Spedio: DisVtuiOn

0... 7 Cll)n8_
oau-9
Ot 1 ~1 o
OJJ'u l l O ~a l2 Oim l l lo!ol

~Q ~ w~

C' l.: ! :..~ fl~j:y J t>;!ribo:t:n

I

:::1

rm- Q
rs:s- ~ ~ -~

r. Level J. O~atJt 0-~~-
- II lilr t.>6rl o.1,;., Didrun.frm

ru-- ~rJ

~ ~-

roo:o:-

No!ot -~~DDT dost11butlon must lctai 1~Y,

.e:o, . r- -._ v.,.... Oi,tlil;t,iio n ~MOTT

:;.._.,. f ~
~.:::J r--u
~J I ~

~.~ .,..---,,. ! " '

)l.. , ~. 1 I " '

~ "

!1 ~.1~ II

,'l n ..~lr--=:J It

~w



........._..,. .QJ I 1D



:

.

~.----,
iI I

1-l

ro~

II' II'
I"" I
1'1' l'i"i

~ l h'l!fltl tl'l Ma i P\.IVf!l.ltH

tii!"Q I

TM !Pno!

Trii:lm

~""' ~""' I '

~-, !""' I '

r-~--"
r--

r--...
r---..s

I' I..,

lfli Jlif r-

.J"'i" ~"" I '

~ r--ow ~'"''" -~ ['""li! r-o-
~ ! " " '1'-"

~ r-r.rr J ~ ~-

- r ~~-1
"

(a)

(b)

a.,-s
Oaso 9
co;, IO Q&s\ aa...-11

Jl ~

'

-0

~~~ D<laul ~--.--.,---,.~ ,

_r..

: :r .

I

. c::'

'I'-.,

.



-l~.-ol l : s~-~9!JC- 0<0\>!b.tton '

-~~

-; - -.-:.:.:.- -.

FIGURE 4 Urban Interstate Vehicle Distribution: M-EPDG Default (a) PerRoad Default (b) and GDOT 2006 Data (c).
GDOT currently uses the 18 kip ESAL equivalents shown in Table 2 which are based on a truck axle load factor of 0.40 for single unit trucks and 1.50 for multi-unit trucks. This data is outdated due to the growth in truck traffic since the last analysis was conducted. For example, the table shows an assumed value of 60 percent multiple unit trucks (Class 8 or higher) on an urban interstate, but Figure 4 shows that value should be about 76 percent.
Pavement design programs typically assume the same growth in traffic across all vehicle configurations. Figure 5 shows that there has been a steady increase in the distribution of Class 9 vehicles on Georgia urban interstates in recent years that considerably exceeds the growth rate normally used in pavement design software. For these reasons, it is very likely that GDOT highways are under-designed more than has been believed.

9

Watson, D.E., J.R. Moore, D. Jared, and P. Wu

Type Facility
Rural Interstate
Primary Routes Heavy State Routes &
Urban Interstates Medium State Routes
Local Collector Light State Route Secondary System &
City Street

TABLE 2 GDOT 18 Kip Axle Equivalents

% Single Unit Trucks 0 10 20 30

% Multiple Unit
Trucks 100 90 80 70

40

60

50

50

60

40

70

. 30

80

20

90

10

100

0

Average 18 kip ESAL 1.50 1.39 1.28 1.17
1.06
0.95 0.84 0.73 0.62 0.51 0.40

65

c
0

60

~

....:c::s 55
'i:

.~ 50

c

0~ 45

40 2002

%Distribution -Class 9 Vehicles
2003 2004 2005 2006
Year

2007

FIGURE 5 Growth in distribution of Class 9 vehicles on urban interstates.

Subgrade

The subgrade for this study represents an extreme in the range of values that would be expected. These results would allow a comparison of the effect of good and poor soil properties in relation
10

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
to pavement performance. It also allows a comparison of the effect of using only the default values built into the software for both the M-EPDG and PerRoad pavement design software. A description of the soil properties provided for this study is shown in Table 3.

Geologic Soil Type
Piedmont Coastal

TABLE 3 Subgrade Properties

Percent Passin
No. No. No. No.
10 40 60 200
99.4 87.8 68.2 27.6 100 75.0 54.0 8.0

0/o Clay 21.7 5.0

Max. Dry Density, lb/ft3
93.7 113.3

Opt. Moist.
(%) 24.1 11.2

Soil Support
Value (SSV)
1.3 6.0

AASHTO Class A-7-6 A-2-4

Level 1 resilient modulus values for unbound granular materials and subgrade are
determined from cyclic triaxial tests based on AASHTO T 307, Determining the Resilient
Modulus of Soil and Aggregate Materials (3). The model for resilient modulus used in the M-
EPDG is a function of the bulk stress, e. The nonlinear elastic coefficients and exponents of the
constitutive model (k1, k2, and k3) are determined by using regression analyses to fit the model to laboratory generated Mr test data. Tests for this study were conducted over a range of normal
stresses from 6 to 24 p.s.i. and confining stresses from 2 to 8 p.s.i. to determine the appropriate k
values. Table 4 shows the k values obtained from materials used in this study.

TABLE 4 Subgrade k Values

Geologic Soil Type Piedmont Coastal

kl 1647.4 431.4

k2 0.763 0.962

k3 -0.807 -2.933

Level 1 design analysis does not recommend the actual k values be used because that portion of the design guide has not been validated nationally. The designer can still input the values, but is warned that the model at this time may not accurately predict performance. To compare the default predictions to actual material data, the k values obtained from the lab tests were used to calculate the resilient modulus. The generalized model for unbound materials (4) used in the design procedure is expressed as:

11

Watson, D.E., J.R. Moore, D. Jared, and P. Wu

(Equation 1)

Where,

Mr =resilient modulus, psi

8 =bulk stress= cr1 + cr2 + cr3

cr1 =major principal stress.

cr2 =intermediate principal stress(= cr3 for Mr test on cylindrical specimen)

cr3 =minor principal stress/confining pressure

'toct = octahedral shear stress = _!_ ~r(o-----o----:)--=2--+- (o-- -+---:-( - -o----:)--2:- o-----a-,.....,....Y

3

1

2

1

3

2

3

Pa =normalizing stress(= atmospheric pressure= 14.7 p.s.i.)

kt, k2, k3 =regression constants obtained by fitting resilient modulus test data to the k-8 model

Figure 6 shows the actual Mr values obtained compared to the predicted values from the model. One of the Coastal region replicate samples was used for this comparison, but other subgrade samples showed a similar, very good relationship as well. Samples were compacted to optimum moisture content.

40000 .-------------------------------~

35000
30000
Cll
0;: 25000 ~
] 20000
~ "fC!. 15000
D.. 10000

y = 0.972x + 704.37 R2 = 0.9925

5000

0

5000 10000 15000 20000 25000 30000 35000 4000

Measured Mr, psi

FIGURE 6 Comparison of measured to predicted Mr for Coastal subgrade sample.

12

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
Once the lab testing is performed, it is possible to determine Mr for any specific loading and confinement conditions. The subgrade Mr values for this study were determined using a cyclic deviator stress of 5.5 p.s.i. and a confining stress of 2 p.s.i. which represents the typical stress state a subgrade encounters under traffic loading (4). The Mr values determined for Georgia soils were significantly different than the default values used in the M-EPDG design program (Table 5). The piedmont soil (A-7-6) had a default value ofMr that was about 277% higher than the actual test data and even the minimum recommended Mr value (5,000 p.s.i.) is about 60% higher than the actual test data. The coastal region soil had default values that were about 35% higher than the actual test data.

TABLE 5 M-EPDG Default and Actual Mr Values for Georgia Soils

Geologic Soil Type
Piedmont Coastal

AASHTO Class A-7-6 A-2-4

Actual Mr (psi) 3,048 15,914

Default Mr (psi) 11 ,500 21 ,500

Aggregate Base Course

The aggregate base material used in this study was also tested under a variety of normal stress and confining stress conditions. The normal stress varied from 12 to 100 p.s.i. and the confining pressure varied from 3 to 20 p.s.i. From that information, the Mr was selected based on a normal stress of 15 p.s.i. and a confining stress of 5 psi (5). Table 6 shows the lab tests resulted in significant differences between the actual and default values for resilient modulus. The default value used in the M-EPDG is about 125% higher than the actual value for the granite aggregate and is about 44% higher than the limestone aggregate results. The minimum Mr value recommended by the M-EPDG software program is 20,000 psi.

TABLE 6 Default and Actual Mr Values and k Values for Aggregate Base

Aggregate Type Granite
Limestone

ActualMr (psi) 13,304 20,895

Default Mr (psi) 30,000 30,000

kt 589.5 953.7

k2 0.725 0.784

kJ
0.172
-0.052

Table 6 shows a considerable difference between the Mr results of limestone and granite aggregate. The results were somewhat surprising because it was assumed that the rougher surface texture of granite aggregate particles would produce a higher resilient modulus. GDOT assigns the same structural value for aggregate base course regardless of aggregate type. Actual Mr values were used in the design analysis for both the M-EPDG and PerRoad software.

13

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
Asphalt Mixtures
Asphalt mixtures used in this study were designed using 65 gyrations with a gyratory compactor in order to determine optimum asphalt content at 4.0% air voids. Once the optimum asphalt content was selected, dynamic modulus samples were prepared by compacting the mixture to obtain 6.0% air voids. The dynamic modulus for asphalt mixtures is determined from laboratory tests conducted at five temperatures and six frequencies. The five temperatures were -10, 40, 70, 100, and 130F and the frequencies were 0.1, 0.5, 1, 5, 10, and 25 hz. The M-EPDG software then uses the laws of superposition to shift the data to produce one master curve. The master curve values are then used to account for seasonal variation in dynamic modulus. An example of the plotted data as well as the master curve for the 12.5mm Superpave mixture using PG 67-22 asphalt binder is shown in Figure 7. For comparison of the material properties for each of the mixes used in this study, the dynamic modulus (E*) at a temperature of 70F and at a frequency -- -of 10Hz is given in Table 7.
Table 7 shows that there is very little difference in dynamic modulus values for HMA base (25mm) and intermediate courses (19mm), but there is a difference in the dynamic modulus for surface mixes. Surprisingly, both the Lithia Springs and Ruby 12.5mm mixes using PG 67-22 asphalt binder resulted in higher dynamic modulus values than the same mixtures with polymermodified asphalt. Likewise, the SMA mixtures with polymer-modified asphalt also had lower dynamic modulus values. Since agencies have typically had improved performance with polymer-modified asphalt mixtures and SMA, it appears the dynamic modulus test may not accurately reflect the actual field performance of those mixtures which have polymer modified asphalt.
Master Curve- Lithia Springs 12.5mm Superpave
PG 67-22 10,000.0 -,----- -- - - -- - - - - - - - -- - - - -- -- - - - - ,

I








10.0 + - - - - - . , . ," ' - - - - - - - - . - - - - - - - r - - -- - , - - - -- - , , - - - - - - - i

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

Log Frequency, Hz

FIGURE 7 Example of mixture dynamic modulus Master Curve.

14

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
TABLE 7 Dynamic Modulus Results (psi) for a Variety of GDOT Mixtures at 70F, 10Hz
Dalton Dalton Lithia Lithia Lithia Lithia Lithia Ruby Ruby Ruby Mix 19mm 25mm 12.5mm 12.5mm 19mm 25mm SMA 12.5mm 12.5mm SMA
(67-22) (67-22) (67-22) (76-22) (67-22) (67-221 (76-22) (67-22) (76-22) (76-22)
E* 568,103 586,454 532,850 517,003 616,747 622,684 395,233 530,943 422,196 328,148
It has been suggested that SMA and polymer-modified asphalts should be assigned a higher structural layer coefficient for use in the previous AASHTO pavement design systems. To do so would reflect the improved performance seen from these mixes. However, both the PerRoad and M-EPDG design procedures showed that the same structural thickness was needed as for conventional unmodified asphalt mixtures. It may be that the thicker asphalt film thickness on polymer-modified (and especially on SMA) mixtures results in lower dynamic modulus even though those mixes are generally believed to be more durable.
Pavement Design
A couple of assumptions were made in the pavement design process that may have influence on the results. The PerRoad program requires modulus values to be input for each material. For this study, the dynamic modulus for average summer temperatures (85F) was used. The PerRoad program has default values available, but they were slightly higher than results for Georgia materials. The M-EPDG software has built-in threshold values for failure criteria that includes 0.25 inch rut for the asphalt pavement and 0.75 inch total rut depth. For this study, the rut threshold for the asphalt pavement was changed to 0.5 inch rut and the total rut depth was left at 0.75 inch. A maximum rut depth of 0.5 inch was thought to be more practical as a maximum value for asphalt layers. The M-EPDG software uses a default of 90% reliability when determining predicted performance. However, the reliability can be changed by the user, if desired.
For the PerRoad software, pavement structures were selected that would provide 100% probability that the performance would not be below critical limits. The critical limits were set so that the horizontal strain at the bottom of the lower asphalt layer would not exceed 100 microstrain and the vertical strain at the top of the subgrade would not exceed 200 micro-strain. These strain levels are assumed to give adequate performance and strain levels lower than this will not have an impact on pavement life.
One point that became quickly evident is that designers that are used to the current GDOT software for pavement design may become frustrated with the slower speed of M-EPDG software analysis. The GDOT program gives calculated results almost instantaneously so the user can conduct several trial pavement structures in a matter of minutes to determine a pavement thickness that meets the required structural number. Due to the many calculations and models used in the M-EPDG software, each trial design takes about 25 minutes (depending on computer processing speed).
Another point to be made is that the PerRoad software showed that a minimum hot mix asphalt thickness is needed in order to keep the strain at the bottom of the asphalt layer below a
15

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
threshold value that would prevent fatigue cracking from the bottom toward the top of the pavement. For this study, the threshold limit for horizontal strain at the bottom of the asphalt layers was set at 100 microstrain (Jlm). Where the GDOT procedure would allow interchanging about 2 inches of aggregate base for every inch of asphalt layer, the PerRoad program showed that the Rural Minor Arterial with good subgrade needed at least 8.5 inches of asphalt pavement. For comparison, the asphalt structure was reduced by one inch and the aggregate base course was increased by four inches and the analysis still showed that the structure would fail due to bottomup fatigue cracking.
The M-EPDG program also made a similar distinction for the Rural Principal Arterial with Piedmont soil using actual project data. In that case, design criteria was met using 1.5 inch asphalt surface, 2 inches of 19mm intermediate course, 13 inches of 25mm asphalt base layer, and 12 inches of aggregate base course. When a more economical design was tried, it was found that it would take 12 inches of aggregate base to replace one inch of asphalt base. For this reason GDOT- may need to consider a minimum asphalt structure for various traffic conditions. Otherwise, users may substitute aggregate base course thickness to meet structural number requirements, but would produce a pavement that would fail prematurely due to fatigue cracking in the asphalt layers.
A comparison of required pavement structures using the M-EPDG default values versus using actual materials properties and traffic loading values showed that in some cases significantly more structure was needed when actual traffic and material properties were used. This difference was due to the default traffic loads being lower than found for most Georgia highway conditions and the default values used a higher Mr for material properties than was found for Georgia materials. The difference was especially noted for the Piedmont soil which had actual Mr results that were below the minimum range suggested in the guide. The granite aggregate base course also had Mr values lower than the minimum suggested in the design guide.
For the Rural Principal Arterial used in this study, the M-EPDG default values resulted in an asphalt pavement thickness of only one inch difference between use of the Piedmont and Coastal soil types. When actual material properties and traffic conditions were used, there was six inches difference in the required structure. The current GDOT procedure showed 11 inches difference in thickness would be needed for the two soil types.
Designing an urban interstate principal arterial with the poor Piedmont subgrade (SSV=1.3) proved to be impossible with the M-EPDG software. In actual practice, soil of this low quality would be undercut and replaced with additional graded aggregate. However, the actual values were used in this study to test the limitations of the software programs.
Typically, when a designed pavement is predicted to fail in rutting, the most economical solution is to increase the thickness of the layer immediately above the subgrade. That did not prove to be true with the M-EPDG program. One trial design of 1.5 inches of asphalt surface, 2 inches of asphalt intermediate course, 26 inches of asphalt base, and 24 inches of aggregate base failed to meet accepted performance for rutting. A second trial included an additional 12 inches of aggregate base, but the predicted performance was unchanged. For that reason, aggregate base layers greater than 12 inches in thickness were not used. Even_including a cement-stabilized base course did not change the outcome.
It was found that increasing the thickness of asphalt layers has limitations as well. Once a
16

Watson, D.E., J.R. Moore, D. Jared, and P. Wu

pavement layer exceeds 20 inches in thickness the software warns that the entered value is outside the typical maximum limit of 20 inches. Beyond that limit it seems the software considers additional thickness of asphalt or aggregate base layers to be of little benefit. It was also discovered that if the total asphalt thickness exceeds 48 inches, the software will cease calculations and return you to the input screen shortly after beginning the calculation routine.
For the urban interstate design, even a structure of 1.5 inches of asphalt surface, 20 inches of asphalt intermediate course, 20 inches of asphalt base, and 12 inches of aggregate base still failed to meet the rutting threshold values. A graph plot of predicted performance (Figure 8) shows that the structure with over 40 inches of asphalt pavement would fail in rutting in about 15 years at 90% reliability. At 50% reliability, the proposed structure would perform satisfactorily. A trial structure with 10 inches less asphalt thickness (8 inches intermediate course and 22 inches for asphalt base) was still acceptable at 50% reliability but showed rutting failure in 12 years at 90% reliability.
For comparison; -an -analysis was- made with the M-EPDG program of the structure designed with the GDOT software for an urban interstate as described above with Piedmont soil subgrade. The GDOT design structure consisted of 24 inches of aggregate base, 12 inches of HMA base, 2 inches of intermediate HMA and 1.5 inches of HMA surface. The results shown in Figure 9 indicate that the pavement structure would fail in rutting with 50% reliability in eight years, and would fail with 90% reliability in just three years.
Permanent Deformation: Rutting

0.90 -r-- --rl---,------,---,---,..-------.---.--------,-----:------.--,
0.80 -- - :I - - -rl -

0.70

AC Rulting Design Value = 0.5 -

Total Rutting Design Limit = 0.75

~ 0.60 - - t - ----,---...,...-----..,...-'

.c
11 0.50 cGl
gg' 0.40
~ 0.30 -1---~=9'

0.20

0.10

0

24

48

72

96

120 144 166 192 216 240 264

Pavement Age (month)

FIGURE 8 M-EPDG prediction of rutting for urban interstate design with 41.5 inches of asphalt pavement and 12 inches of aggregate base.

17

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
Permanent Deformation: Rutting

AC Rutting Design Value = 0.5

Total Rutting Design Limit= 0.75

I

I

, -Total - 9o%!Rellnblllty

0

24

46

72

96

120

144

168

192

216

240

264

Pavement Age (month)

FIGURE 9 M-EPDG prediction of rutting for GDOT urban interstate design mix.

Tables 8-10 give the design structure needed for the three traffic scenarios used in this study; rural minor arterial (2,000 AADT), rural principal arterial (15,000 AADT), and urban principal interstate arterial (125,000 AADT). In each case a traffic growth factor of 4% per year was used for a 20-year design life. It must be noted that the GDOT software typically predicts structural needs based on fatigue analysis. However, both the PerRoad and M-EPDG software indicated the primary failure mode would be rutting and those designs were adjusted to meet the rutting criteria.
For the designs shown in Tables 8-10, each proposed design was run for comparison using the current GDOT software. The results show that the GDOT procedure appears to be conservative by 25-30 percent when the poor Piedmont soil (SSV=1.3) was used. In contrast, the GDOT procedure may significantly under-design pavement structures for the Coastal soil (SSV=6.0). Pavements designed by PerRoad and M-EPDG were 24-107 percent over-designed based on the GDOT procedure.
Typically GDOT uses soil support values between 2.0 and 4.5. If a SSV is less than 2.0, the soil is undercut or stabilized to bring it up to at least 2.0. A SSV of 4.5 is the maximum value used even if actual values are higher.

18

Watson, D.E., J.R. Moore, D. Jared, and P. Wu

Pavement Structure
AC Surface (in) AC Intermediate (19mm)
AC Base (25mm) Aggregate Base % Over-design by GDOT

------- ,--- - - - - - -, - - - - - - - -- / --

- - --~--------------------

Piedmont Soil (SSV=l.3)

Coastal Region Soil(SSV=6.0)

M-EPDG M-EPDG

M-EPDG M-EPDG

GDOT PerRoad Default Actual GDOT PerRoad Default Actual

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

2

2

2

2

2

2

2

2

5

4

3

7

n/a

5

3

6

12

6

6

12

7

8

12

12

3.6

-22.0

-28.1

15.8

2.2

71.3

72.9

107.4

-

- - - - - - --------- --- -- --

Pavement Structure
AC Surface (in) AC Intermediate (19mm)
AC Base (25mm) Aggregate Base % Over-design by GDOT

GDOT 1.5 2 13 12 3.4

----- -- -- -------- --- --------- - ---c -- - ---- - ----- - - -,--- - - - - ' --- - -- ----- ,

Piedmont Soil (SSV=1.3)

Coastal Region Soil (SSV=6.0)

I

M-EPDG M-EPDG

M-EPDG M-EPDG.

PerRoad Default

Actual

GDOT PerRoad Default

Actual

' I

1.5

1.5

1.5

1.5

1.5

1.5

1.5

2

2

2

4

2

2

2

8

5

13

n/a

8

6

7

8

12

12

-26.1

-29.7

3.4

-

12

12

12

12

I

0.4

43.4

29 .1

36.3 I

- - - - - - - - - - - - - - - - - - - - -- - - - - - - -- - - - - - - - - - - - - - - - -- - - - - - - - - I:"" -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 - - - - - - - - - - -

Piedmont Soil (SSV=1.3)

Coastal Re!rion Soil (S SV=6.0)

Pavement Structure

M-EPDG M-EPDG

M-EPDG M-EPDG

GDOT PerRoad Default Actual GDOT PerRoad Default Actual

AC Surface (in)

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

AC Intermediate (19mm)

2

2

2

?

2

2

2

2

AC Base (25mm)

12

9

11

?

6

11

10

16

Aggregate Base

24

12

12

?

12

12

12

12

% Over-design by GDOT

2.5

-29.2

-22.4

?

1.0

29.1

23.5

57.2

19

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
CONCLUSIONS AND RECOMMENDATIONS
This study was conducted with soil and aggregate materials that represent the best and worstcase scenarios found in Georgia and these conclusions are only applicable to the materials used in this research. The ranges were intended to give GDOT personnel and other users an indication of the effect that changes in material properties may have on predicted performance. Based on test results of materials and other data used in this study, the following conclusions are made.
1. The M-EPDG default values for vehicle distribution show significantly less Class 9 vehicles than were found for most of Georgia highways based on W-4 tables.
2. The default values for resilient modulus of both soil and aggregate materials are significantly higher than the actual values determined from laboratory test results. Actual test results for the Piedmont soil and granite aggregate base courses were lower than the minimum Mr values recommended to be used in the M-EPDG software. As a result, the required pavement structure using M-EPDG default values versus actual materials properties and traffic loading values showed that significantly more structure was needed when actual values were used.
3. The M-EPDG design program with default values and the PerRoad program with actual load spectra and material properties resulted in somewhat similar recommended structures.
4. PerRoad indicates a minimum asphalt structure may be needed for various traffic conditions. Otherwise, users may substitute aggregate base course thickness to meet structural number requirements, but would produce a pavement that would fail prematurely due to fatigue cracking in the asphalt layer.
5. Use the same structural layer coefficient for SMA and polymer-modified Superpave mixes as for unmodified mixtures. The same structural thickness was needed for SMA and polymer-modified mixtures, but dynamic modulus results were generally lower, than for conventional unmodified asphalt mixtures. It may be that the thicker asphalt film thickness on polymer-modified (and especially on SMA) mixtures results in lower dynamic modulus even though those mixes are generally believed to be more durable.
6. GDOT is cautioned against using the default values built into the M-EPDG software. In some cases the results were very similar while in other cases the required asphalt pavement structure was as much as 8 inches thicker. Further validation is needed with a broader range of materials found in Georgia.
7. The M-EPDG software was unable to design a satisfactory pavement structure at the 90% reliability level for the high traffic urban principal interstate arterial when poor soil subgrade (SSV=l.3) was used. The software warned that asphalt layers greater than 20 inches in thickness are not typical, and would not perform calculations when a total asphalt structure greater than 48 inches was used. Typically this subgrade would be undercut or stabilized to bring it up to a SSV of 2.0. However, these results also indicate that 90% reliability may be too high for general use.
8. GDOT should continue to use the 1972 AASHTO procedure until further validation is performed on a greater variety of Georgia materials. However, pavements may be
20

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
under-designed since the software has not been updated to account for changes in traffic conditions.
ACKNOWLEGEMENTS
The authors wish to thank the Georgia Department of Transportation for its support in sponsoring this study. GDOT Materials and Research personnel helped locate and provide soil and aggregate base course samples used in this study. Thanks are also extended to Dr. Saeed Maghsoodloo, Statistician, for conducting the statistical analysis of test results.
Burns, Cooley, Dennis, a private consultant firm in Jackson, Mississippi was a subcontractor on this project responsible for conducting the required testing on soil and aggregate base materials to determine resilient modulus (Mr) and corresponding regresswn coefficient (k) values.
REFERENCES
1. Robert P. Elliott, Selection ofSubgrade Modulus for AASHTO Flexible Pavement Design, Transportation Research Record No. 1354, TRB/NRC, Washington, D.C., 1992. pp 3944.
2. Angela L. Priest, Calibration of Fatigue Transfer Functions for Mechanistic-Empirical Flexible Pavement Design, Thesis presented to graduate Faculty of Auburn University, Auburn, Alabama, 2005.
3. American Association of State Highway and Transportation Officials, Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Washington, D.C. 2007.
4. Munir D. Nazzal, Louay N. Mohammad, and Kevin Gapard, Development of Resilient Modulus Prediction Models for Louisiana Subgrade Soils, presented at 2008 TRB Annual Meeting, Washington, D. C., 2008. pp 5-22.
5. Ravindra Gudishala, Development ofResilient Modulus Prediction Models for Base and Subgrade Pavment Layers from In Situ Devices Test Results, Thesis presented to graduate Faculty of Louisiana State University, 2004. pp 57-58.
21

Watson, D.E., J,R. Moore, D. Jared, and P. Wu
AP"P.ENDIX A W-4TABLES

7/14/2008
W-4 Table
Equivalency Factor By Direction
Axle Grouping Method
State GA Period 2006

Rural Minor Arterial
Vehicle Size & Weight

Station Codes

21321251,93000671,26101371

0

ftde~al Hiqhway Adminis:t~>:ti on Ufuc~ otH1ghway Yoh~y llll>o~mai1oH
niPPil
7/14/2008

Page 1 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es)

6

DAn.Y AVERAGES BY VEIDCLE CLASS

SINGLE AXLES

Upto1

0.0003 0.0002

0

0

1

0

0

3

0

0

0

0

lto2

0.0017 0.0017

0

0

5

1

0

6

6

0

0

0

0

2 toJ

0.0090 0.0093

0

0

10

3

0

5

15

0

0

0

0

3 to4

0.0317 0.0336

0

18

12

0

5

59

I

I

0

4 to5

0.0858 0.0919

0

13

15

0

5

56

I

5

1

0

5 to 6

0.1952 0.2083

0

0

8

4

0

4

10

0

4

0

6to7

0.3922 0.4110

0

0

7

0

3

3

0

8

0

0

7to 8 8 to 9

0.7169 0.7299

0

0

3

0

0

3

0

6

0

1.2156 1.1944

0

0

o.

0

0

0

0

0

2

0

0

9 to 10

1.9380 1.8331

0

0

0

0

0

0

0

0

0

0

0

10 to 11

2.9342 2.6761

0

0

0

0

0

0

0

0

0

0

0

11 to 12

4.2538 3.7579

0

0

0

0

0

0

0

0

0

0

0

12to 13

5.9482 5.1207

0

0

0

0

0

0

0

0

0

0

0

13 to 14

8.0779 6.8162

0

0

0

0

0

0

0

0

0

0

0

14 to 15

10.7185 8.9074

0

0

0

0

0

0

0

0

0

0

0

15 to 16

13.9664 11.4686

0

0

0

0

0

0

0

0

0

0

0

16 to 17

17.9388 14.5862

0

0

0

0

0

0

0

0

0

0

0

17 to 18

22.7722 18.3580

0

0

0

0

0

0

0

0

0

0

0

18 to 19

28.6197 22.8941

0

0

0

0

0

0

0

0

0

0

0

19 to 20

35.6494 28.3167

0

0

0

0

0

0

0

0

0

0

0

Above20

39.4816 31.2656

0

0

0

0

0

0

0

0

0

0

0

AVERAGE SJNGLE AXLES WEIGHED

0

2

65

36

0

32

I 52

2

27

4

2

AVERAGE VEIDCLES WEIGHED

0

32

36

0

13

14I

2

5

1

AVERAGE VEIDCLES COUNTED

481

32

36

0

I3

I41

2

5

TOTAL AXLES

321

Page 2 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es)

6

DAILY AVERAGES BYVEIDCLE CLASS

Upto2

0.0007

0.0003

0

0

0

0

0

0

0

0

0

0

0

2 to4

0.0042

0.0023

0

0

0

0

0

0

4

0

0

0

I

4to6

0.0228

0.0128

0

0

0

3

0

18

0

0

0

0

6 to 8

0.0800

0.0462

0

0

0

8

0

35

0

0

0

0

8 to 10

0.2163

0.1265

0

0

0

8

0

57

0

0

0

0

10 to 12

0.4899

0.2866

0

0

0

5

0

66

1

0

0

0

12 to 14

0.9754

0.5654

0

0

0

5

0

52

2

0

0

0

14 to 16

1.7580

1.0041

0

0

0

5

0

0

32

0

0

0

16 to 18

2.9258

1.6429

0

0

0

I

0

0

6

0

0

0

18 to 20

4.5666 2.5215

0

0

0

0

0

0

0

0

0

0

20 to 22

6.7774

3.6811

0

0

0

0

0

0

0

0

0

0

0

22 to24

9.6817 5.1692

0

0

0

0

0

0

0

0

0

0

0

24 to 26

13.4446 7.0437

0

0

0

0

0

0

0

0

0

0

0

26 to 28

18.2764 9.3760

0

0

0

0

0

0

0

0

0

0

0

28 to 30

24.4284 12.2525

0

0

0

0

0

0

0

0

0

0

0

30 to 32

32.1870 15.7756

0

0

0

0

0

0

0

0

0

0

0

32 to34

41.8693 20.0639

0

0

0

0

0

0

0

0

0

0

0

34 to36

53.8227 25.2522

0

0

0

0

0

0

0

0

0

0

0

36 to 38

68.4258 31.4918

0

0

0

0

0

0

0

0

0

0

0

38 to 40

86.0899 38.9508

0

0

0

0

0

0

0

0

0

0

0

Above40

95.7407 43.0072

0

0

0

0

0

0

0

0

0

0

0

AVERAGE SINGLE AXLES WEIGHED

0

0

0

36

0

6

272

4

0

AVERAGE VEIDCLES WEIGHED

0

32

36

0

13

141

2

5

AVERAGE VEIDCLES COUNTED

481

32

36

0

13

141

2

5

TOTAL AXLES

640

Page 3 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es)

6

DAILY AVERAGES BY VEIDCLE CLASS

TRIDEM AXLES

Up to3

0.0012 0.0004

0

0

0

0

0

0

0

0

0

0

0

3 to {i

0.0073

0.0027

0

0

0

0

0

0

0

0

0

0

0

6to9

0.0393

0.0154

0

0

0

0

0

0

0

0

0

0

0

9 to 12

0.1376 0.0557

0

0

0

0

0

0

0

0

0

0

0

12 to 15

0.3705

0.1524

0

0

0

0

0

0

0

0

0

0

0

15 to 18

0.8335 0.3453

0

0

0

0

0

0

0

0

0

0

0

18 to 21

1.6420 0.6813

0

0

0

0

0

0

0

0

0

0

0

21 to24

2.9179

1.2099

0

0

0

0

0

0

0

0

0

0

0

24 to27

4.7849

1.9798

0

0

0

0

0

0

0

0

0

0

0

27 to 30

7.3849 . 3.0385

0

0

0

0

0

0

0

0

0

0

0

30 to 33

10.9081 4.4358

0

0

0

0

0

0

0

0

0

0

0

33 to 36

15.6137 6.2291

0

0

0

0

0

0

0

0

0

0

0

36 to 39

21.8295 8.4880

0

0

0

0

0

0

0

0

0

0

0

39 to 42

29.9418 11.2985

0

0

0

0

0

0

0

0

0

0

0

42 to 45

40.3871 14.7648

0

0

0

0

0

0

0

0

0

0

0

45 to 48

53.6505 19.0103

0

0

0

0

0

0

0

0

0

0

0

48to 51

70.2665 24.1778

0

0

0

0

0

0

0

0

0

0

0

51 to 54

90:8223 30.4299

0

0

0

0

0

0

0

0

0

0

0

54 to 57

115.9606 37.9489

0

0

0

0

0

0

0

0

0

0

0

57 to 60

146.3827 46.9373

0

0

0

0

0

0

0

0

0

0

0

Above60

163.0061 51.8254

0

0

0

0

0

0

0

0

0

0

0

AVERAGE SINGLE AXLES WEIGHED

0

0

0

0

0

0

0

1

0

0

0

AVERAGE VEIDCLES WEIGHED

0

1

32

36

0

13

141

2

5

AVERAGEVEBICLESCOUNTED

481

32

36

0

13

141

2

5

TOTAL AXLES

3

Page 4 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es)

6

DAILY AVERAGES BY VEIDCLE CLASS

QUAD AXLES

Upto4

0.0010

0.0003

0

0

0

0

0

0

0

0

0

0

0

4to 8

0.0098

0.0037

0

0

0

0

0

0

0

0

0

0

0

8 to 12

0.0523

0.0206

0

0

0

0

0

0

0

0

0

0

0

12 to 16

0.1834

0.0742

0

0

0

0

0

0

0

0

0

0

0

16 to20

0.4940

0.2032

0

0

0

0

0

0

0

0

0

0

0

20 to24

1.1114

0.4604

0

0

0

0

0

0

0

0

0

0

0

24 to 28

2.1894

0.9084

0

0

0

0

0

0

0

0

0

0

0

28 to 32

3.8905

1.6132

0

0

0

0

0

0

0

0

0

0

0

32 to 36

6.3799

2.6397

0

0

0

0

0

0

0

0

0

0

0

36 to 40

9.8465

4.0513

0

0

0

0

0

0

0

0

0

0

0

40 to 44

14.5441 5.9144

0

0

0

0

0

0

0

0

0

0

0

44 to 48

20.8183 8.3054

0

0

0

0

0

0

0

0

0

0

0

48 to 52

29.1060 11.3173

0

0

0

0

0

0

0

0

0

0

0

52 to 56

39.9223 15.0646

0

0

0

0

0

0

0

0

0

0

0

56 to 60

53.8495 19.6864

0

0

0

0

0

0

0

0

0

0

0

60 to 64

71.5340 25.3470

0

0

0

0

0

0

0

0

0

0

0

64 to 68

93.6887 32.2371

0

0

0

0

0

0

0

0

0

0

0

68 to 72

121.0964 40.5732

0

0

0

0

0

0

0

0

0

0

0

72 to 76

154.6141 50.5985

0

0

0

0

0

0

0

0

0

0

0

76 to 80

195.1769 62.5830

0

0

0

0

0

0

0

0

0

0

0

Above SO

217.3415 69.1006

0

0

0

0

0

0

0

0

0

0

0

AVERAGE SINGLE AXLES WEIGHED

0

0

0

0

0

0

0

0

0

0

0

AVERAGE VEIDCLES WEIGHED

0

1

32

36

0

13

141

2

5

AVERAGE VEIDCLES COUNTED

481

32

36

0

13

141

2

5

TOTAL AXLES

0

Page 5 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es)

6

DAILY AVERAGES BY VEffiCLE CLASS

ESAL PER VEffiCLE

0.0000 0.2700 0.2900

PERCENT DISTRIBUTION USING
AVERAGE DAILY COUNT I#IJ~.;~l:li:i:JIIii!

0.00

0.13

3.46

ESAL PER VEffiCLE

0.0000 0.2800 0.3000

PERCENT DlSTRIBUTION USING

DAILY COUNT BY TRUCK TYPE

0.00

0.20

5.40

FFic-V.OIJUME : ->.:_.:. :" :.~ }: ~:~~...: .... ,;..~ ~:r.-::-.~.: : .-- .

AVERAGE VEffiCLES WEIGHED AVERAGE VEHICLES COUNTED DAILY COUNT BY TRUCK TYPE

0

1

32

481

1

32

0.00

0.00

13.94

0.7700 10A2
0.4800 9.75
36 36 15.54

0.2700
O.o3
0.1700 0.03
0 0 0.14

0.5200 2.53
0.4600 3.37
13 13 5.63

1.3500 71.29
0.8200 64.86
141 141 60.67

3.1300 2.91
1.7800 2.49
2 2 1.07

2.1500 4.28
2.1900 6.56
5 5 2.29

TOTAL AVG. WEIGHED: TOTAL AVG. COUNTED: TOTAL AXLES: TOTAL RIGID ESAL: TOTAL FLEX ESAL:

234 2,467 988 267 178

1.4500 0.59 1.1600 0.71
0.47

0.3200 0.07 0.1900 0.06
0.25

Page6 of7

State

GA

FLEXIBLE PAVEMENTS

0/o

TRUCKS

0

2

4

6

8

10

2

0.10 0.13 0.15 0.18 0.22

0.27

4

0.21 0.25 0.31 0.35 0.43

0.53

6

0.31 0.38 0.46 0.53 0.65

0.80

8

0.42 0.51 0.62 0.70 0.86

1.06

10

0.52 0.63 0.77 0.88 1.08

1.33

IS

0.78 0.95 1.16 1.32 1.62

2.00

20

1.04 1.26 1.55 1.76 2.16

2.66

25

1.30 1.58 1.94 2.20 2.70

3.33

30

1.56 1.90 2.32 2.64 3.24

3.99

35

1.82 2.21 2.71 3.08 3.77

4.66

40

2.08 2.53 3.10 3.52 4.31

5.32

45

2.34 2.85 3.49 3.96 4.85

5.99

50

2.60 3.16 3.87 4.40 5.39

6.66

Averaging Method 1' eriod

Hour of Day 2006

20 YEAR ESAL ESTIMATES ADT=lOOO
Values in millions
% TRUCKS
2 4 6 8 10 15 20 25 30 35 40 45 50

RIGID PAVEMENTS

0

2

4

6

8

0.16

0.19

0.24

0.27

0.33

0.32

0.39

0.48

0.54

0.66

0.48

0.58

0.72

0.81

1.00

0.64

0.78

0.95

1.08

1.33

0.80

0.97

1.19

1.35

1.66

1.20

1.46

1.79

2.03

2.49

1.60

1.95

2.39

2.71

3.32

2.00

2.43

2.98

3.39

4.15

2.40

2.92

3.58

4.06

4.98

2.81

3.41

4.18

4.74

5.81

3.21

3.90

4.77

5.42

6.65

3.61

4.38

5.37

6.09

7.48

4.01

4.87

5.97

6.77

8.31

10 0.41 0.82 1.23 1.64 2.05 3.08 4 . 10 5. 13 6.15 7.18 8.20 9.23 10.25

Page 7 of7

7/14/2008
W-4 Table
Equivalency Factor By Direction
Axle Grouping Method State GA
Period 2006

Rural Principal Arterial
Vehicl~ Size & Weight

Station Codes

29502351,1611&951, 11508131,63004171

0

~deral Hiqhway Adn1ini;:tr;rti on Ulhce otH19hway roh~y II!Nrmrl1on
IHPPil
7/14/2008

Page 1 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es)

2

DAILY AVERAGES BY VEHICLE CLASS

SINGLE AXLES

Up to 1

0.0003

0.0002

0

6

0

0

4

1

0

3

2

lto2

0.0017

0.0017

0

3

4

0

0

12

3

0

0

0

1

2 to 3

0.0090

0.0093

0

3

18

3

0

9

18

0

0

3to4

0.0317

0.0336

0

2

32

13

0

10

95

4

2

2

0

4to5

. 0.0858

0.0919

0

5

55

29

0

18

165

3

4

6

5 to~;

0.1952

0.2083

0

14

10

0

6

30

3

2

0

6to'l'

0.3922

0.4110

0

0

9

4

0

6

4

0

3

0

7 to 8

0.7169

0.7299

0

0

6

2

0

5

4

0

3

1

0

8 to 9

1.2156

1.1944

0

0

5

0

0

3

3

0

0

0

9 to 10

1.9380 1.8331

0

0

2

0

0

2

2

0

1

0

0

10 to 11

2.9342

2.6761

0

0

I

0

0

0

0

0

0

0

0

11 to 12

4.2538

3.7579

0

0

0

0

0

0

0

0

0

0

0

12 to 13

5.9482

5.1207

0

0

0

0

0

0

0

0

0

0

0

13 to 14

8.0779

6.8162

0

0

0

0

0

0

0

0

0

0

0

14 to 15

10.7185 8.9074

0

0

0

0

0

0

0

0

0

0

0

15 to 16

13.9664 11.4686

0

0

0

0

0

0

0

0

0

0

0

16 to 17

17.9388 14.5862

0

0

0

0

0

0

0

0

0

0

0

17 to 18

22.7722 18.3580

0

0

0

0

0

0

0

0

0

0

0

18 to 19

28.6197 22.8941

0

0

0

0

0

0

0

0

0

0

0

19 to 20

35.6494 28.3167

0

0

0

0

0

0

0

0

0

0

0

Abon20

39.4816 31.2656

0

0

0

0

0

0

0

0

0

0

0

AVERAGESINGLEAXLES~GHED

0

20

147

62

74

326

9

18

17

4

AVERAGE VEHICLES WEIGHED

0

8

72

62

30

303

9

4

4

2

AVERAGE VEHICLES COUNTED

964

9

73

62

30

305

9

4

4

2

TOTAL AXLES

675

Page 2 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es)

2

DAILY AVERAGES BY VEIDCLE CLASS

TANDEM AXLES

Upto2

0.0007

0.0003

0

0

0

0

0

0

0

0

0

0

4

2 to 4

0.0042

0.0023

0

0

0

0

0

0

4

0

0

0

2

4 to 6

0.0228

0.0128

0

0

0

2

0

19

0

0

0

0

6 to 8

0.0800

0.0462

0

0

0

8

0

2

67

0

0

0

8 to 10

0.2163

0.1265

0

0

0

25

0

8

141

0

2

0

10 to 12

0.4899

0.2866

0

0

0

12

0

3

73

2

0

1

12 to 14

0.9754

0.5654

0

0

0

7

0

2

72

2

0

0

14 to 16

1.7580

1.0041

0

0

0

5

0

1

81

2

0

0

0

16 to 18

2.9258

1.6429

0

0

0

3

0

0

.73

2

0

0

0

18 to20

4.5666

2.5215

0

0

0

0

0

37

1

0

0

0

20 to22

6.7774

3.6811

0

0

0

0

0

0

13

0

0

0

0

22 to 24

9.6817

5.1692

0

0

0

0

0

0

3

0

0

0

0

24 to 26

13.4446 7.0437

0

0

0

0

0

0

1

0

0

0

0

26 to 28

18.2764 9.3760

0

0

0

0

0

0

0

0

0

0

0

28 to 30

24.4284 12.2525

0

0

0

0

0

0

0

0

0

0

0

30 to 32

32.1870 15.7756

0

0

0

0

0

0

0

0

0

0

0

32 to34

41.8693 20.0639

0

0

0

0

0

0

0

0

0

0

0

34 to 36

53.8227 25.2522

0

0

0

0

0

0

0

0

0

0

0

36 to 38

68.4258 3L4918

0

0

0

0

0

0

0

0

0

0

0

38 to 40

86.0899 38.9508

0

0

0

0

0

0

0

0

0

0

0

Above40

95.7407 43.0072

0

0

0

0

0

0

0

0

0

0

0

AVERAGE SINGLE AXLES WEIGHED

0

1

0

62

1

16

584

12

0

4

8

AVERAGE VEIDCLES WEIGHED

0

8

72

62

30

303

9

4

4

2

AVERAGEVEIDCLESCOUNTED

964

9

73

62

30

305

9

4

4

2

TOTAL AXLES

1,358

Page3 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(t"s)

2

DAILY AVERAGES BY VEIDCLE CLASS

TRIDEM AXLES

Upto3

0.0012

0.0004

0

0

0

0

0

0

0

0

0

0

0

3 to6

0.0073

0.0027

0

0

0

0

0

0

0

0

0

0

0

6to 9

0.0393

0.0154

0

0

0

0

0

0

0

0

0

0

0

9toU

0.1376

0.0557

0

0

0

0

0

0

0

1

0

0

0

12 to 15

0.3705

0.1524

0

0

0

0

0

0

0

0

0

0

0

15 to 18

0.8335

0.3453

0

0

0

0

0

0

0

1

0

0

0

18 to 21

1.6420

0.6813

0

0

0

0

0

0

0

1

0

0

0

21 to ~4

2.9179

1.2099

0

0

0

0

0

0

0

I

0

0

0

24 to Z7

4.7849

1.9798

0

0

0

0

0

0

0

0

0

0

0

27 to 30

7.3849

3.0385

0

0

0

0

0

0

0

0

0

0

0

30 to 33

10.9081 4.4358

0

0

0

0

0

0

0

0

0

0

0

33 to 36

15.6137 6.2291

0

0

0

0

0

0

0

0

0

0

0

36 to 39

21.8295 8.4880

0

0

0

0

0

0

0

0

0

0

0

39 to 42

29.9418 11.2985

0

0

0

0

0

0

0

0

0

0

0

42 to 45

40.3871 14.7648

0

0

0

0

0

0

0

0

0

0

0

45 to 48

53.6505 19.0103

0

0

0

0

0

0

0

0

0

0

0

48 to 51

70.2665 24.1778

0

0

0

0

0

0

0

0

0

0

0

51 to 54

90.8223 30.4299

0

0

0

0

0

0

0

0

0

0

0

54 to 57

115.9606 37.9489

0

0

0

0

0

0

0

0

0

0

0

57 to 60

146.3827 46.9373

0

0

0

0

0

0

0

0

0

0

0

Above60

163.0061 51.8254

0

0

0

0

0

0

0

0

0

0

0

AVERAGE SINGLE AXLES WEIGHED

0

0

0

0

0

0

0

4

0

0

0

AVERAGE VEHICLES WEIGHED

0

8

72

62

1

30

303

9

4

4

2

AVERAGE VEIDCLES COUNTED

964

9

73

62

1

30

305

9

4

4

2

TOTAL AXLES

12

Page 4, of7

State Period

GA 2006

Averaging Method Hour of Day

Func.tional Class(es)

2

DAILY AVERAGES BY VEIDCLE CLASS

QUAD AXLES

Upto4

0.0010 0.0003

0

0

0

0

0

0

0

0

0

0

0

4 to 8

0.0098 0.0037

0

0

0

0

0

0

0

0

0

0

0

8 to 12

0.0523

0.0206

0

0

0

0

0

0

0

0

0

0

0

12 to 16

0.1834 0.0742

0

0

0

0

0

0

0

0

0

0

0

16 to 20

0.4940 0.2032

0

0

0

0

0

0

0

0

0

0

20 to 24

1.1114 0.4604

0

0

0

0

0

0

0

0

0

0

0

24 to 28

2.1894 0.9084

0

0

0

0

0

0

0

0

0

0

0

28 to32

3.8905 1.6132

0

0

0

0

0

0

0

0

0

0

0

32 to 36

6.3799 2.6397

0

0

0

0

0

0

0

0

0

0

0

36 to 40

9.8465 4.0513

0

0

0

0

0

0

0

0

0

0

0

40 to 44

14.5441 5.9144

0

0

0

0

0

0

0

0

0

0

0

44 to 48

20.8183 8.3054

0

0

0

0

0

0

0

0

0

0

0

48 to 52

29.1060 113173

0

0

0

0

0

0

0

0

0

0

0

52 to 56

39.9223 15.0646

0

0

0

0

0

0

0

0

0

0

0

56 to 60

53.8495 19.6864

0

0

0

0

0

0

0

0

0

0

0

60 to 64

71.5340 25.3470

0

0

0

0

0

0

0

0

0

0

0

64 to 68

93.6887 32.2371

0

0

0

0

0

0

0

0

0

0

0

68 to 72

121.0964 40.5732

0

0

0

0

0

0

0

0

0

0

0

72 to 76

154.6141 50.5985

0

0

0

0

0

0

0

0

0

0

0

76 to 80

195.1769 62.5830

0

0

0

0

0

0

0

0

0

0

0

Above SO

217.3415 69.1006

0

0

0

0

0

0

0

0

0

0

0

AVERAGE SINGLE AXLES WEIGHED

0

0

0

0

1

0

0

2

0

0

0

AVERAGE VEIDCLES WEIGHED

0

8

72

62

30

303

9

4

4

2

AVERAGEVEIDCLESCOUNTED

964

9

73

62

30

305

9

4

4

2

TOTAL AXLES

8

Page 5 of7

State Period

GA 2006

AYeraging Method Hour of Day

Functional Class(es)

2

DAILY AVERAGES BY VEIDCLE CLASS

ESAL PER VEIDCLE

0.0000 0.2800 0.4100

PERCENT DISTRIBUTION USING
AVERAGE DAILY COUNT
mm;tt&YWi

0.00

0.26

2.96

ESAL PER VEIDCLE

0.0000 0.2300 0.4100

PERCENT DISTRIBUTION USING

DAILY C9UNT BY TRUCK TYPE

0.00

0.35

4.81

C 'VOLfJllfE: .:_~.......-:.~ .-'...--:.:_.._;i~~;.;.; x.::<~:-o:!{-:~:;r: '~ _.;:{

AVERAGE VEIDCLES WEIGHED AVERAGE VEIDCLES COUNTED DAIT.,Y COUNT BY TRUCK TYPE

0

8

72

964

9

73

0.00

0.00

14.84

0.8000 4.91
0.5200 5.22
62 62 12.61

1.8600 0.21
0.8700 0.16
1 1 0.23

0.8400 2.56
0.7500 3.69
30 30 6.21

2.7500 83.82
1.6000 79.59
303 305 62.31

3.2200 2.74
1.7400 2.41
9 9 1.74

2.4000 0.86
2 .3600 1.38 4 4 0.73

1.3300 0.54
1.1100 0.74
4 4 0.83

1.1900 0.28
0.7000 0.27
2 2 0.48

TOTAL AVG. WEIGHED: TOTAL AVG. COUNTED: TOTAL AXLES: TOTAL RIGID ESAL: TOTAL FLEX ESAL:

496 4,435 2,100 997 611

Page 6 of7

State

GA

0/o TRUCKS
2 4 6 8 10 15 20 25 30 35 40 45 50

FLEXIBLE PAVEMENTS

0

2

0.18 0.22 0.36 0.44 0.54 0.66 0.72 0.87 0.90 1.09 1.35 1.64 1.80 2.19 2.25 2.73 2.70 3.28 3.15 3.83 3.60 4.37 4.05 4.92 4;50 5.47

4 0.27 0.54 0.80 1.07 1.34 2.01 2.68 3.35 4.02 4.69 5.36 6.03 6.70

6

8

0.30 0.37

0.61 0.75 0.91 1.12 1.22 1.49

1.52 1.87 2.28 2.80

3.04 3.73 3.80 4.66 4.56 5.60 5.32 6.53 6.08 7.46 6.84 8.39

7.60 9.33

10
0.46 0.92 1.38 1.84 2.30 3.45 4.60 5.76 6.91 8.06 9.21 10.36 11.51

Averaging Method Period

Hour of Day 2006

20 YEAR ESAL ESTIMATES ADT=1000
Values in millions
% TRUCKS
2 4 6 8 10 15 20 25 30 35 40 45 50

RIGID PAVEMENTS

0

2

4

6

8

10

0.30

0.36

0.44

0.50

0.61

0.76

0.59

0.72

0.88

1.00

1.22

1.51

0.89

1.08

1.32

1.50

1.84

2.27

1.18

1.44

1.76

2.00

2.45

3.02

1.48 1.79 2.20 2.50 3.06

3.78

2.22

2.69

3.30

3.74

4.59

5.67

2.95

3.59

4.40

4.99

6.12

7.56

3.69

4.49

5.50

6.24

7.65

9.45

4.43 5.38

6.60 7.49 9.18

11.33

5.17 6.28

7.70

8.73 10.71 13.22

5.91

7.18

8.80

9.98 12.24 15.11

6.65

8.08

9.90 11.23 13.78

17.00

7.39 8.97 11.00 12.48 15.31 18.89

Page 7 of7

7/14/2008
W-4 Table
EQt.~ivalencv Factor By Direction
Axle Grouping Method State GA Period 2006

Urban Principal Arterial Interstate
Vehicle Size &. Weight

Station Codes

21033451,89031431,21533611,89337211,67237971

0

Federal Hiqhwa~ Ad111inis:tnti on Uthct ot H19hway rob~y lnt..rnrrtiOH
n!PPil
7/14/2008

Page 1 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es}

11

DAILY AVERAGES BY VEHICLE CLASS

Up t(l1

0.0003

0.0002

0

30

4

0

29

9

41

11

29

Ito 2

0.0017

0.0017

0

41

25

1

70

23

0

72

13

27

2 to 3

0.0090

0.0093

0

12

78

6

0

35

44

0

18

6

10

3 to 4

0.0317

0.0336

0

9

128

40

60

365

9

22

18

6

4 to 5

0.0858

0.0919

0

17

124

88

75

666

14

47

35

11

5 to 6

0.1952

0.2083

0

8

50

46

(I

31

129

2

28

11

2

6 to 7

0.3922

0.4110

0

4

44

20

(I

28

23

1

31

9

7 to 8

0.7169

0.7299

0

3

30

7

(I

19

23

0

31

7

8 to 9

1.2156

1.1944

0

2

16

2

0

l3

18

0

21

3

9 to 10

1.9380

1.8331

0

3

6

0

0

6

6

0

13

1

10 to 11

2.9342

2.6761

0

1

0

()

1

0

0

0

11 to 12

4.2538

3.7579

0

0

0

0

()

0

0

0

0

0

0

12 to 13

5.9482

5.1207

0

0

0

0

()

0

0

0

0

0

0

13 to 14

8.0779

6.8162

0

0

0

0

()

0

0

0

0

0

0

14 to 15

10.7185 8.9074

0

0

0

0

()

0

0

0

0

0

0

15 to 16

13.9664 11.4686

0

0

0

0

()

0

0

0

0

0

0

16 to 17

17.9388 14.5862

0

0

0

0

()

0

0

0

0

0

0

17 to 18

22.7722 18.3580

0

0

0

0

0

0

0

0

0

0

0

18 to 19

28.6197 22.8941

0

0

0

0

0

0

0

0

0

0

0

19 to 20

35.6494 28.3167

0

0

0

0

0

0

0

0

0

0

0

Above 20

39.4816 31.2656

0

0

0

0

0

0

0

0

0

0

0

AVE:RAGE SINGLE AXLES WEIGHED

0

132

505

212

3

367

1,308

27

327

115

89

AVE:RAGE VEHICLES WEIGHED

0

69

247

211

3

156

1,171

26

70

33

22

AVE:RAGE VEHICLES COUNTED

2,258

71

252

215

3

160

1,190

26

72

34

23

TOTAL AXLES

2,996

Page 2 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es}

II

DAILY AVERAGES BY VEIDCLE CLASS

TANDEM AXLES

Up to 2

0.0007

0.0003

0

1

0

0

7

0

2

5

2 to 4

0.0042

0.0023

0

3

0

2

0

9

0

4

3

4 to 6

0.0228

0.0128

0

0

0

16

0

3

64

0

2

6 to 8

0.0800

0.0462

0

0

0

36

0

19

280

0

0

4

3

8 to 10

0.2163

0.1265

0

1

0

46

0

30

590

8

0

10

4

10 to 12

0.4899

0.2866

0

0

34

0

16

276

5

I

8

4

12 to 14

0.9754

0.5654

0

0

25

0

11

284

6

0

6

4

14 to 16

1.7580

1.0041

0

0

21

0

6

354

7

0

5

5

16 to 18

2 .9258

1.6429

0

0

0

20

0

4

262

3

0

5

4

18 to 20

4.5666

2.5215

0

0

0

8

0

1

78

2

0

1

1

20 to 22

6 .7 7 7 4

3.6811

0

0

0

1

0

0

6

0

0

0

22 to 24

9.6817

5.1692

0

0

0

0

0

0

I

I

0

0

0

24 to 26

13.4446 7.0437

0

0

0

0

0

0

0

0

0

0

0

26 to 28

18.2764 9.3760

0

0

0

0

0

0

0

0

0

0

0

28 to 30

24.4284 12.2525

0

0

0

0

0

0

0

0

0

0

0

30 to 32

32.1870 15.7756

0

0

0

0

0

0

0

0

0

0

0

32 to 34

41.8693 20.0639

0

0

0

0

0

0

0

0

0

0

0

34 to 36

53.8227 25.2522

0

0

0

0

0

0

0

0

0

0

0

36 to 38

68.4258 31.4918

0

0

0

0

0

0

0

0

0

0

0

38 to 40

86.0899 38.9508

0

0

0

0

0

0

0

0

0

0

0

Above 40

95.7407 43.0072

0

0

0

0

0

0

0

0

0

0

0

AVERAGE SINGLE AXLES WEIGHED

0

9

209

1

93

2,210

34

9

41

35

AVERAGE VEHICLES WEIGHED

0

69

247

211

3

156

1,171

26

70

33

22

AVERAGE VEHICLES COUNTED

2,258

71

252

215

3

160

1,190

26

72

34

23

TOTAL AXLES

5,218

Page 3 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es)

11

DAILY AVERAGES BY VEHICLE CLASS

TRIDEM AXLES

Up~J

0.0012

0.0004

0

0

0

0

0

0

0

0

0

0

0

3~6

0.0073

0.0027

0

0

0

0

0

0

1

0

0

0

6~9

0.0393

0.0154

0

0

0

0

0

0

0

0

0

0

9~U

0.1376

0.0557

0

0

0

0

0

0

0

3

0

0

0

u~~

0.3705

0.1524

0

0

0

0

0

0

0

4

0

0

0

~~~

0.8335

0.3453

0

0

0

0

0

0

0

0

0

0

u~n nw~

1.6420

0.6813

0

0

0

0

0

0

0

3

0

0

0

2.9179

1.2099

0

0

0

0

0

()

0

0

0

0

M~n

4.7849

1.9798

0

0

0

0

0

0

0

0

0

0

n~D

7.3849

3.0385

0

0

0

0

0

0

0

0

0

0

D~D

10.9081 4.4358

0

0

0

0

0

0

0

0

0

0

0

D~B

15.6137 6.2291

0

0

0

0

0

0

0

0

0

0

0

~~"

21.8295 8.4880

0

0

0

0

(I

0

0

0

0

0

0

Dfu~

29.9418 11.2985

0

0

0

0

(I

0

0

0

0

0

0

~fu~

40.3871 14.7648

0

0

0

0

0

0

0

0

0

0

0

~fu~

53.6505 19.0103

0

0

0

0

0

0

0

0

0

0

0

~fu~

70.2665 24.1778

0

0

0

0

0

0

0

0

0

0

0

~~~

90.8223 30.4299

0

0

0

0

0

0

0

0

0

0

0

~fu~

115.9606 37.9489

0

0

0

0

0

0

0

0

0

0

0

~~~

146.3827 46.9373

0

0

0

0

0

0

0

0

0

0

0

Above60

163.0061 51.8254

0

0

0

0

0

0

0

0

0

0

0

AVERAGE SINGLE AXLES WEIGHED

0

0

0

0

15

0

AVERAGE VEHICLES WEIGHED

0

69

247

211

3

156

1,171

26

70

33

22

AVERAGE VEHICLES COUNTED

2,258

71

252

215

3

160

1,190

26

72

34

23

TOTAL AXLES

60

Page 4 of7

State .Period

GA 2006

Averaging Method Hour of Day

Functional Class(es)

11

DAILY AVERAGES BY VEIDCLE CLASS

QUAD AXLES

Upto4

0.0010

0.0003

0

0

0

0

0

0

0

0

0

0

0

4 to 8

0.0098

0.0037

0

0

0

1

1

0

1

0

0

0

0

8 to 12

0.0523

0.0206

0

0

0

0

0

0

0

0

0

0

0

12 to 16

0.1834

0.0742

0

0

0

0

0

0

0

0

0

0

0

16 to 20

0.4940

0.2032

0

0

0

0

0

0

0

1

0

0

0

20 to 24

1.1114

0.4604

0

0

0

0

0

0

0

0

0

0

24 to 28

2.1894

0.9084

0

0

0

0

0

0

0

0

0

0

28 to 32

3.8905

1.6132

0

0

0

0

0

0

0

0

0

0

0

32 to 36

6.3799

2.6397

0

0

0

0

0

0

0

0

0

0

0

36 to 40

9.8465

4.0513

0

0

0

0

0

0

0

0

0

0

0

40 to 44

14.5441 5.9144

0

0

0

0

0

0

0

0

0

0

0

44 to 48

20.8183 8.3054

0

0

0

0

0

0

0

0

0

0

0

48 to 52

29.1060 11.3173

0

0

0

0

0

0

0

0

0

0

0

52 to 56

39.9223 15.0646

0

0

0

0

0

0

0

0

0

0

0

56 to 60

53.8495 19.6864

0

0

0

0

0

0

0

0

0

0

0

60 to 64

71.5340 25.3470

0

0

0

0

0

0

0

0

0

0

0

64 to 68

93.6887 32.2371

0

0

0

0

0

0

0

0

0

0

0

68 to72

121.0964 40.5732

0

0

0

0

0

0

0

0

0

0

0

72 to 76

154.6141 50.5985

0

0

0

0

0

0

0

0

0

0

0

76 to 80

195.1769 62.5830

0

0

0

0

0

0

0

0

0

0

0

Above80

217.3415 69.1006

0

0

0

0

0

0

0

0

0

0

0

AVERAGE SINGLE AXLES WEIGHED

0

0

0

2

0

1

2

0

0

0

AVERAGE VEIDCLES WEIGHED

0

69

247

211

3

156

1,171

26

70

33

22

AVERAGE VEIDCLES COUNTED

2,258

71

252

215

3

160

1,190

26

72

34

23

TOTAL AXLES

28

Page 5 of7

State Period

GA 2006

Averaging Method Hour of Day

Functional Class(es)

11

DAILY AVERAGES BY VEIDCLE CLASS

ESAL PER VEIDCLE

0.0000 0.3400 0.4000

PERCENT DISTRIBUTION USING

AVERAGE DAILY COUNT

0.00

0.69

2.88

iif.l f&J,;,1fi:Ji2ii:!'liii!ii~i!iilll

ES.AL PER VEIDCLE

0.0000 0.3100 0.4100

PERCENT DISTRIBUTION USING

DAILY COUNT BY TRUCK TYPE

0.00

0.98

- FFIG.V'OL'lJME ..,_ -:!::.~~J:,-:'-;_:I:;o~t_:;Y,'*-'-o ~~-!!.'~,~~~~

AVERAGE VEIDCLES WEIGHED AVERAGE VEIDCLES COUNTED DAII.Y COUNT BY TRUCK TYPE

0

69

2,258

71

0.00

0.00

4.51
247 252 12.77

1.1000 6.77
0.7000 6.66
211 215 10.88

0.5700 0.06
0.3100 0.05 3 3 0.17

0.9500 4.33
0.7500 5.32 156 160 8.09

2.1500 73.06
1.2800 67.46 1,171 1,190 60.27

3.9800 2.96
2.0900 2.41
26 26 1.32

1.4900 3.06
1.4700 4.66
70 72 3.63

TOTAL AVG. WEIGHED: TOTAL AVG. COUNTED: TOTAL AXLES: TOTAL RIGID ESAL: TOTAL FLEX ESAL:

2,009 15,232 8,616 3,444 2,225

1.8400 1.78
1.3300 1.99
33 34 1.72

2.1000 1.36
1.3000 1.30
22 23 1.15

Page 6 of7

State

GA

% TRUCKS
2 4 6 8 10 15 20 25 30 35 40 45 50

FLEXIBLE PAVEMENTS

0

2

0.16 0.19 0.32 0.38 0.47 0.58 0.63 0.77 0.79 0.96 1.19 1.44 1.58 1.92 1.98 2.40 2.37 2.88 2.77 3.36 3.16 3.84 3.56 4.32

3.95 4.80

4 0.24 0.47 0.71 0.94 1.18 1.77 2.35 2.94 3.53 4.12 4.71 5.30 5.88

6

8

0.27 0.33

0.53 0.66

0.80 0.98

1.07 1.31

1.34 1.64

2.00 2.46

2.67 3.28

3.34 4.09

4.01 4.91

4.67 5.73

5.34 6.55

6.01 7.37

6.68 8.19

10
0.40 0.81 1.21 1.62 2.02 3.03 4.04 5.05 6.06 7.08 8.09 9.10 10.11

Averaging 1\Idhod Period

Hour of Day 2006

20 YEAR ESAL ESTIMATES ADT=lOOO
Values in millions
0/o TRUCKS
2 4 6 8 10 15 20 25 30 35 40 45 50

RIGID PAVEMENTS

0

2

4

6

8

10

0.25

0.30

0.37

0.42

0.52

0.64

0.50

0.61

0.74

0.84

1.03

1.28

0.75 0.91

1.11

1.26 1.55

1.91

1.00 1.21

1.49

1.69

2.07

2.55

1.25 1.51

1.86 2.11

2.58

3.19

1.87

2.27

2.78

3.16

3.88

4.78

2.49

3.03

3.71

4.21

5.17

6.38

3.12

3.79

4.64

5.27

6.46

7.97

3.74

4.54

5.57

6.32

7.75

9.57

4.36 5.30

6.50

7.37

9.04

11.16

4.99

6.06

7.43

8.43 10.34 12.76

5.61

6.82

8.35

9.48 11.63

14.35

6.23

7.57

9.28 10.53 12.92

15.95

Page 7 of7

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
APPENDIXB SUBGRADE RESILIENT MODULUS

0'1

0'2

Sequence psi

psi

1

13.8

7.9

2

11.4

5.9

3

9.0

3.9

4

6.6

1.9

5

16.8

7.9

6

14.4

5.9

7

11.9

3.9

8

9.6

1.9

9

19.8

7.9

10

17.4

5.9

11

14.9

3.9

12

12.6

1.9

13

23.9

7.9

14

21.3

5.9

15

18.9

3.9

16

16.6

1.9

std.

15.0

4.0

O's

a

Toct

0'1- O's

MR

Pred. MR

psi

psi

psi

psi

psi

psi

BCD Project:

050088

7.9

29.6

2.8

5.9

23.2

2.6

5.9

8460

8181

5.5

6675

6632

Project Name: Date:

Resilent Modulus Testing GDOT

3.9

16.8

2.4

1.9

10.4

2.2

5.1

4869

4971

4.7

3681

3190

Sample I.D.:

10/14/2008 Paulding Subgrade

7.9

32.6

4.2

8.9

6996

7157

Piedmont Class

5.9

26.2

4.0

8.5

5672

5933

Replicate Test:

3.9

19.7

3.8

1.9

13.4

3.6

8.0

4313

4640

7.7

3180

3237 1

7.9

35.6

5.6

11.9

6307

6311

5.9

29.2

5.4

11.5

5228

5328

3.9

22.7

5.2

11.0

4067

4296

1.9

16.4

5.0

10.7

2998

3177

7.9

39.7

7.5

16.0

5854

5377

5.9

33.1

7.3

15.4

4968

4662

3.9

26.7

7.1

15.0

3920

3863

1.9

20.4

6.9

14.7

2913

3014

4.0

23.0

5.2

11.0

4353

K1 =

463.3

K2 =

0.993

Ks=

-2.953

n=

16

SES = Sy=

0.009 0.138

Se= Se/Sy =
R2=

0.027 0.195 0.962

Summary, US units

Paulding_Rep 1.xls

I

(11

O"z

Sequence psi

psi

1

13.8

7.9

2

11.4

5.9

3

9.0

3.9

4

6.6

1.9

5

16.8

7.9

6

14.4

5.9

7

11.9

3.9

8

9.5

1.9

9

19.8

7.9

10

17.3

5.9

11

15.0

3.9

12

12.5

1.9

13

23.7

7.9

14

21.4

5.9

15

19.0

3.9

16

16.6

1.9

std.

15.0

4.0

(13

8

Toct

(11- (13

MR

Pred. MR

psi

psi

psi

psi

psi

psi

BCD Project:

050088

7.9

29.6

2.8

5.9

23.2

2.6

5.9

8388

8061

5.5

6654

6582

Project Name: Date :

Resilent Modulus Testing GDOT

3.9

16.8

2.4

1.9

10.4

2.2

5.1

4869

4983

4.7

3725

3246

Sample !.D.:

10/14/2008 Paulding Subgrade

7.9

32.6

4.2

8.9

6890

7058

Piedmont Class

5.9

26.2

4.0

8.5

5615

5890

Replicate Test:

3.9

19.7

3.8

8.0

4295

4647

2

1.9

13.3

3.6

7.6

3236

3282

7.9

35.6

5.6

11.9

6241

6231

5.9

29.1

5.4

11.4

5185

5310

3.9

22 .8

5.2

11.1

4061

4288

1.9

16.3

5.0

10.6

3047

3215

7.9

39.5

7.4

15.8

5799

5355

5.9

33.2

7.3

15.5

4924

4617

3.9

26.8

7.1

15.1

3910

3853

1.9

20.4

6.9

14.7

2954

3040

4.0

23.0

5.2 - 11.0

4354

K1=

462.7

Kz =

0.961

K3 =

-2.900

n=

16

SES = 0.009 Sy = 0.134

Se = Se/Sy =
Rz=

0.026 0.198 0 .9 61

Summal)', US units

Paulding_Rep 2.xls

0"1

0"2

Sequence psi

psi

1

13.8

7.9

2

11.4

5.9

3

9.0

3.9

4

6.6

1.9

5

16.6

7.9

6

14.3

5.9

7

12.0

3.9

8

9.6

1.9

9

19.8

7.9

10

17.4

5.9

11

14.9

3.9

12

12.6

1.9

13

23.8

7.9

14

21.4

5.9

15

19.0

3.9

16

16.6

1.9

std.

15.0

4.0

'--

0"3

9

Tact

0"1- 0"3

MR

Pred. MR

psi

psi

psi

psi

psi

psi

BCD Project:

050088

7.9

29.6

2.8

5.9

23.2

2.6

5_9

6875

6236

5_5

5187

5132

Project Name: Date:

Resilent Modulus Testing GDOT

3.9

16.6

2.4

1.9

10.4

2.2

5.1

3704

3924

4.7

2858

2594

Sample J.D.:

10/14/2008
Paulding Subgrade

7.9

32.6

4.2

8.9

5489

5426

Piedmont Class

5.9

26.1

4.0

8.4

4327

4577

Replicate Test:

3.9

19.8

3.8

6.1

3342

3619

3

1.9

13.4

3.6

7.7

2573

2593

7.9

35.6

5.6

11.9

4664

4762

5.9

29.2

5.4

11.5

3901

4070

3.9

22.7

5.2

11.0

3134

3333

1.9

16.4

5.0

10.7

2467

2514

7.9

39_6

7.5

15.9

4235

4048

5.9

33.2

7.3

15.5

3633

3523

3.9

26.8

7.1

15.1

2998

2960

1.9

20.4

6.9

14.7

2450

2355 I

4.0

23.0

5.2

11.0

3374 I

K1 =

368.3

K2 =

0.931

K3 =

-2.945

n=

16

SES = 0.008 Sy= 0.131

Se= Se/Sy =
R2 =

0.025 0.191 0.964

Summary, US units

Paulding_Rep 3.xls

0"1

0"2

Sequence psi

psi

1

8.2

5.9

2

10.2

5.9

3

12.2

5.9

4

14.3

5.9

5

16.1

5.9

6

6.2

3.9

7

8.2

3.9

8

10.3

3.9

9

12.2

3 .9

10

14.3

3.9

11

4.2

1.9

12

6.2

1.9

13

8.2

1.9

14

10.3

1.9

15

12.3

1.9

std.

15.0

4.0

0"3

e

Toct

0"1 - O"a

MR I Pred. MR I

psi

psi

psi

5.9

20.0

1.1

5.9

22.0

2.0

psi

psi I psi

2.3

I 3o5oo 31121

4.3

I 32472 31875

BCD Project: Project Name: Date:

050088
Resilent Modulus Testing GDOT

5.9

24.0

3.0

6.3

I 33501

32524

Sample J.D.:

5.9

26.1

4.0

8.4

I 33863 33112

5.9

27.9

4.8

10.2

I 33846 33553

3.9

14.0

1.1

2.3

I 2276o 23338

Replicate Test:

3.9

16.0

2.0

4.3

I 24147 24652

3.9

18.1

3.0

6.4

I 25333 25839

3.9

20.0

3.9

8.3

I 26826 26773

10/14/2008 Pierce Subgrade
Coastal Class

3.9

22.1

4.9

10.4

27185 27679

1.9

8.0

1.1

2.3

15255 14858

1.9

10.0

2.0

4.3

17041

16871

1.9

12.0

3.0

6.3

19003 18591

1.9

14.1

4.0

8.4

19436 20147

1.9

16.1

4.9

10.4

4.0

23.0

5.2

11.0

28213

K1 =

1,762.2

K2 =

0.807

K3 =

-0.913

n=

14

SES = Sy=

0.001 0.116

Se = Se/Sy =
R2=

0.011 0.091 0.992

Summary, US units

Pierce_Rep 1.xl:;

a,

O"z

Sequence psi

ps i

1

8.2

5.9

2

10.2

5.9

3

12.2

5.9

4

14.2

5.9

5

16.2

5.9

6

6.1

3.9

7

8.2

3.9

8

10.3

3.9

9

12.3

3.9

10

14.2

3.9

11

4.2

1.9

12

6.4

1.9

13

8.1

1.9

14

10.2

1.9

15

12.2

1.9

std.

15.0

4.0

0"3

e

Toct

a,_a3

MR

Pred. MR

psi

psi

psi

psi

psi

psi

BCD Project:

050088

5.9

20.0

1.1

5.9

22.0

2.0

2.3

25736 27089

4.3

29292 28045

Project Name: Date:

Resilent Modulus Testing GDOT

5.9

24.0

3.0

6.3

30403 28916

Sample I.D.:

10/14/2008

5.9

26.0

3.9

8.3

30775 29715

5.9

28.0

4.9

10.3

30887 30451

Pierce Subgrade Coastal Class

3.9

13.9

1.0

2.2

20361 20912

Replicate Test:

3.9

16.0

2.0

4.3

21515 22327

2

3.9

18.1

3.0

6.4

22975 23590

3.9

20.1

4.0

8.4

24473 24678

3.9

22.0

4.9

10.3 25045 25622

1.9

8.0

1.1

2.3

14846 14056

1.9

10.2

2.1

4.5

16187 16122

1.9

11.9

2.9

6.2

17874 17525

1.9

14.0

3.9

8.3

18168 19075

1.9

16.0

4.9

10.3

4.0

23.0

5.2

11.0

26196

K, =

1,540.3

Kz =

0.716

K3 =

-0.579

n=

14

SES = Sy=

0.003 0.107

Se = Se/Sy =
Rz =

0.017 0.163 0.973

Summary, US units

Pierce_Rep 2.xls

~,I Sequence

0'1 ps i

0'2 psi

I

1

8.2

5.9

2

10.3

5.9

3

12.2

5.9

4

14.2

5.9

5

16.2

5.9

6

6.2

3.9

7

8.2

3.9

8

10.2

3.9

9

12.2

3.9

10

14.2

3.9

11

4.2

1.9

12

6.2

1.9

13

8.2

1.9

14

10.2

1.9

15

12.1

1.9

std.

15.0

4.0

0'3

e

Tact

0'1.0'3

MR

Pred. MR I

psi

psi

psi

psi

psi

psi

BCD Project:

050088

5.9

20.0

1.1

5.9

22.1

2.1

2.3

29047 28549

4.4

29652 29120

Project Name: Date:

Resilent Modulus Testing GDOT

5.9

24.0

3.0

6.3

30287 29553

Sample I.D.:

10/14/2008

5.9

26.0

3.9

8.3

30367 29937

Pierce Subgrade

5.9

28.0

4.9

10.3 30798 30261

Coastal Class

3 .9

14.0

1.1

2.3

20526 21734

Replicate Test: .

3 .9

16.0

2.0

4.3

21811 22808

3

3.9

18.0

3.0

6.3

23049 23718

3.9

20 .0

3.9

8.3

24634 24496

3.9

22.0

4.9

10.3 24947 25165

1.9

8.0

1.1

2.3

14861 14169

1.9

10.0

2.0

4.3

16088 15923

1.9

12.0

3.0

6 .3

17786 17396

1.9

14.0

3.9

8.3

17946 18649

1.9

15.9

4.8

10.2

4.0

23.0

5.2

11 .0

25634

K1=

1,639.6

K2 =

0.765

K3 =

-0.929

n=

14

SES = Sy=

0.002 0.110

Se= Se/Sy =
R2=

0.015 0.132 0.983

Summary, US units

Pierce_Rep 3.xl ~>

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
APPENDIXC AGGREGATE BASE COURSE RESILIENT MODULUS

a1

Uz

a3

9

Toct

a1.a3

MR Pred. MR

Sequence psi

psi

psi

psi

ps i

psi

psi

psi

BCD Project:

050088

1

6.0

2.9

2.9

11.8

1.5

3.1

7401

7888

Project Name:

Resilent Modulus Testing

2

9.4

2.9

2.9

15.2

3.1

6.5

9756

9610

Date:

GDOT

3

12.0

2.9

2.9

17.8

4.3

9.1

11239 10863

Sample I.D.:

10/1 4/2008

4

10.1

4.9

4.9

19.9

2.5

5.2

12469 11986

5

15.0

4.9

4.9

24.8

4.8

10.1 14435 14181

Lithia Springs Base Granite

6

20.1

4.9

4.9

29.9

7.2

15.2 16103 16346

Replicate Test:

7

20.0

9.9

9.9

39.8

4.8

10.1 21347 20799

3

8

30.0

9.9

9.9

49.8

9.5

20.1 24307 24509

9

40.1

9.9

9.9

59.9

14.2

30.2 27282 28057

10

25.0

14.9

14.9

54.8

4.8

10.1

26334 26946

11

30.1

14.9

14.9

59.9

7.2

15.2 27987 28691

12

45.1

14.9

14.9

74.9

14.2

30.2 33379 33622

13

35.1

19.9

19.9

74.9

7.2

15.2 34403 34382

14

40.0

19.9

19.9

79.8

9.5

20.1 36403 35903

15

60.1

19.9

19.9

99.9

19.0

40.2 42929 41943

std .

21.0

5.0

5.0

31.0

7.5

16.0

--

16809

K1=

646.0

K2 =

0.810

K3 =

-0.080

n=

15

SES = 0.002 Sy= 0.233

Se= Se/Sy=
R2 =

0.013 0.056 0.997

Summary, US units

Lithia_Rep 3.xls

Sequence
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 std.

a, psi 6.1 9.0 12.1 10.0 15.0 20.0 20.0 30 .0 40.1 25.0 30.0 45.0 34.9 40.0 60.0 21.0

O"z
psi 2.9 2.9 2.9 4.9 4.9 4.9 9.9 9.9 9.9 14.9 14.9 14.8 19.8 19.9 19.9 5.0

0"3 psi
2.9 2.9 2.9 4.9 4.9 4.9 9.9 9.9 9.9 14.9 14.9 14.8 19.8 19.9 19.9 5.0

8 psi 11.9 14.8 17.9 19.8 24.8 29.8 39.8 49.8 59.9 54.8 59.8 74.6 74.5 79.8 99.8 31 .0

Toct

a,_o-3

MR Pred. MR

psi

psi

psi

psi

BCD Project:

1.5

3.2

5581

6727

Project Name:

2.9

6.1

7479

8025

Date:

4.3

9.2

9790

9418

Sample I.D.:

2.4

5.1

9402

9274

4.8

10.1

12891 11472

7.1

15.1

15631 13727

Replicate Test:

4.8

10.1

16914 14949

9.5

20.1

21372 19602

14.2

30.2

24945 24524

4.8

10.1

17488 17879

7.1

15.1

19880 20272

14.2

30.2

27228 27729

7.1

15.1

21454 22925

9.5

20.1

24327 25522

18.9

40.1

32825 36079

7.5

16.0

14217

050088 Resilent Modulus Testing
GDOT 10/14/2008 Lithia Springs Base
Granite
2

K,=

482.4

Kz =

0.560

K3 =

0.671

n=

15

SES = Sy=

0.021 0.222

Se = Se/Sy =
Rz=

0.042 0.189 0.964

Summary, US units

Lithia_Rep 2.xls

Sequence
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Stcj,__

cr1 psi 6.0 9.0 12.1 .10.0 15.1 20.0 20.0 30.0 40.0 25.0 30.0 45.0 35.0 40.0 60.1 21 .0

a2
psi 2.9 2.9 2.9 4.9 4.9 4.9 9.9 9.9 9.9 14.9 14.9 14.9 19.9 19.9 19.9 5.0

a3
psi 2.9 2.9 2.9 4.9 4.9 4.9 9.9 9.9 9.9 14.9 14.9 14.9 19.9 19.9 19.9 5.0

e
psi 11 .8 14.8 17.9 19.8 24.9 29.8 39.8 49.8 59.8 54.8 59 .8 74.8 74.8 79.8 99.9 31.0

Toct
psi 1.5 2.9 4.3 2.4 4.8 7.1 4.8 9.5 14.2 4.8 7.1 14.2 7.1 9.5 19.0 7.5

a1_a3
psi 3.1 6.1 9.2 5.1 10.2 15.1 10.1 20.1 30.1 10.1 15.1 30.1 15.1 20.1 40 .2 16.0

MR psi
7175 9093 10920 12372 14745 16531 22091 24995 27606 26236 27806 33121 32570 34484 40732

Pred. MR psi
7827 9334 I 10814 I 11825 14082 16138 20550 24217 27689 26589 28281 33160 33868 35406 41385 16635

BCD Project: Project Name: Date : Sample 1.0.:
Replicate Test:

050088 Resilent Modulus Testing
GDOT
10/14/2008 Lithia Springs Base
Granite

K1=

640.1

K2 =

0.806

K3 =

-0.075

n=

15

SES = Sy=

0.004 0.233

Se =
Se/Sy = R2=

0.019 0.080 0.994

Summary, US units

Lithia_Rep 1.xls

0'1 Sequence psi

1

6.1

2

9.1

3

12.1

4

10.0

I 5

15.1

6

20.3

7

20.1

I 8

30.1

9

40.3

10

25.1

11

30.0

12

45.0

I 13

35.0

14

40.0

I 15 std

60.0 21.0

0'2

0'3

8

Teet

0'1.0'3

MR Pred. MR

psi

psi

psi

psi

psi

psi

psi

BCD Project

2.9

2.9

11.9

1.5

3.2

10013 12145

Project Name:

2.9

2.9

14.9

2.9

6.2

14191 14517

Date:

2.9

2.9

17.9

4.3

9.2

17523 16765

Sample J.D.:

4.9

4.9

19.8

2.4

5.1

20420 18628

4.9

4.9

24.9

4.8

10.2 24450 22163

4.9

4.9

30.1

7.3

15.4 27101 25547

Replicate Test:

9.9

9.9

39.9

4.8

10.2 35591 33222

9.9

9.9

49.9

9.5

20.2 40257 38759

9.9

9.9

60.1

14.3

30.4 42889 44052

14.9

14.9

54.9

4.8

10.2 42990 43693

14.9

14.9

59.8

7.1

15.1

44487 46110

14.9

14.9

74.8

14.2

30.1

52009 53201

19.9

19.9

74.8

7.1

15.1

53569 55878

19.9

19.9

79.8

9.5

20.1

56242 58020

19.9

19.9

99.8

18.9

40.1

65739 66367

5.0

5.0

31.0

7.5

16.0

26143

050088 Resilent Modulus Testing
GDOT 10/14/2008
Dalton Limestone
3

K1-

1,007.61

K2 =

0.859

K3=

-0.1751

n=

15

70000
I 60000
50000
I 40000

SES= 0.914 Sy= 0.242

Se= Se/Sy =
R2=

0.034 0.140 0.980

I 30000
20000
I 10000
0 0

10000

20000

Summary, US units

Dalton_Rep 3.xl~.

Sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 std

O"j
psi 6.0 9.0 12.1 10.0 15.0 20.1 20.1 30.0 40.0 25.0 30.1 45.0 35.1 40.0 60.0 21.0

0"2 psi 2.9 2.9 2.9 4.9 4.9 4.9 9.9 9.9 9.9 14.9 14.9 14.9 19.9 19.9 19.9 5.0

0"3 psi 2.9 2.9 2.9 4.9 4.9 4.9 9.9 9.9 9.9 14.9 14.9 14.9 19.9 19.9 19.9 5.0

8
psi 11.8 14.8 17.9 19.8 24.8 29.9 39.9 49.8 59.8 54.8 59.9 74.8 74.9 79.8 99.8 31.0
-

Toct
psi 1.5 2.9 4.3 2.4 4.8 7.2 4.8 9.5 14.2 4.8 7.2 14.2 7.2. 9.5 18.9 7.5

O"j- 0"3 psi 3.1 6.1 9.2 5.1 10.1 15.2 10.2 20.1 30.1 10.1 15.2 30.1 15.2 20.1 40.1 16.0

MR psi 12382 15667 18076 21203 24431 26569 36489 40712 43134 45610 47085 53866 57572 60126 68262

Pred. MR psi
13172 : 15611 17957 20156 23566 26763 35318 40209 44741 46316 48385 54144 58537 60096 66399 27470

BCD Project: Project Name: Date: Sample LD.:
Replicate Test:

050088 Resilent Modulus Testing
GDOT 10/14/2008
Dalton Limestone
2

K1=

1,109.2

K2 =

0.852

K3=

-0.276

n=

15

SES = Sy=

0.002 0.232

Se= Se/Sy =
R2 =

0.014 0.060 0.996

Summary, US units

Dalton_Rep 2.xls

(71

O'z

(73

e

Toct

(71 - (73

MR

Pred. MR

Sequence psi

psi

psi

psi

psi

psi

psi

psi

BCD Project:

050088

1

6.0

2.9

2.9

11.8

1.5

3.1

8309

9774

Project Name:

Resilent Modulus Testing

2

9.1

2.9

2.9

14.9

2.9

6.2

11339 11641

Date:

GDOT

3

12.0

2.9

2.9

17.8

4.3

9.1

14024 13335

Sample I.D.:

10/14/2008

4

10.0

4.9

4.9

19.8

2.4

5.1

13901 13844

Dalton

5

15.1

4.9

4.9

24.9

4.8

10.2

18233 16664

Limestone

6

20 .2

4.9

4.9

30.0

7.2

15.3

21178 19428

Replicate Test:

7

20.0

9 .9

9 .9

39.8

4.8

10.1

24685 22486

8

30.0

9.9

9.9

49.8

9.5

20 .1

29396 27666

9

40.0

9.9

9.9

59.8

14.2

30.1

32448 32777

10

25.0

14.9

14.9

54.8

4.8

10.1

27751 27597

11

30.0

14.8

14.8

59.6

7.2

15.2

28934 30136

12

44.8

14.8

14.8

74.4

14.1

30.0

36554 37681

13

35.0

19.8

19.8

74.6

7.2

15.2

33451 34795

14

39.9

19.8

19.8

79.5

9.5

20.1

35670 37328

15

60.0

19.9

19.9

99.8

18.9

40.1 45900 47568

- - std

21 .0

5.0

5.0

31 .0

7.5

16.0

19928

K1=

744 .3

Kz =

0.640

1(3 =

0.294

n=

15

SES = Sy=

0.012 0.21 4

Se = 0.032
= Se/Sy 0.150 = Rz 0.978

Summary, US units

Dalton_Rep 1.xls

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
APPENDIXD GDOT PAVEMENT DESIGNS

FLEXIBLE PAVEMENT DESIGN ANALYSIS

Project:

County:

P.I. no.:

Description: Rural Minor Arterial (Low Volume)-poor ' soil

Traffic Data (NOTE: AADTs are one-way) 24-hour Truck Percentage: 12.00% AADT initial year of design period: AADT final year of design period: Mean AADT (one-way):

1,000 vpd 2,191 vpd 1,596 vpd

(2008) (2028)

Design Loading

Mean AADT

1,596

*

LDF

Trucks

1. 00 * 0. 120

*

18-K ESAL 0.40

Total Daily Loads 78

Total predicted design period loading 78 * 20 * 365 = 569,400

Design Data Terminal Serviceability Soil Support: 1.30 Regional Factor: 1.80

Index:

2.50

PROPOSED FLEXIBLE PAVEMENT STRUCTURE
---------------------------------------------------------------------------

Thickness

Structural

Structural

Material

Inches

(mm)

Coefficient

Value

===========================================================================

9.5 mm Superpave

1. 50

(38)

0. 4 4

0.66

19 mm Superpave

2.00

(51)

0.44

0.88

25 mm Superpave

1. 00 4.00

( 25) (102)

0.44 0.30

0.44 1. 20

Graded Aggregate Base

12.00

( 305)

0.16

1. 92

---------------------------------------------------------------------------

Required SN = 4.92

Proposed SN = 5.10

>>> Proposed pavement is 3.6% Overdesign <<<

Remarks:

Prepared by

Don Watson

July 16, 2008 Date

Recommended ----S-t-a-t-e--M ---a-t-e-r-i-a-l-s--&--R-e-s-e-a-r-c-h---E-n--g-in--e-e-r------------D-a-t-e-------------

Approved

--------------------~--------~------~---------------------------------

State Consultant Design Engineer

Date

FLEXIBLE PAVEMENT DESIGN ANALYSIS

Project:

County:

P.I. no.:

Description: Rural Minor Arterial (Low Volume)-good soil

Traffic Data (NOTE: AADTs are one-way) 24-hour Truck Percentage: 12.00% AADT initial year of design period: AADT final year of design period: Mean AADT (one-way):

1,000 vpd 2,191 vpd 1,596 vpd

(2008) (2028)

Design Loading

Mean AADT

1,596

*

LDF

Trucks

1. 00 * 0.120

*

18-K ESAL 0.40

Total Daily Loads 78

Total predicted design period loading 78 * 20 * 365 569,400

Design Data Terminal Serviceability Index: Soil Support: 6.00 Regional Factor: 1.80

2.50

-_-__-_-_-_-_-_--_-_-_-__-_-_-_-_-_-_--__-P_-R_-O_-P_-O_-S_-E_-D-_-_F_-L-,_E-_X-_-_IB-_L-_E-_-_P-_A-_V-_E-_M-_E-_N-_T-__-_-ST_-R_-U_-C_-T_-U_-R_-_E-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-

Thickness

Structural

Structural

Material

Inches

(mm)

Coefficient Value

---------------------------------------------------------------------------

9.5 mm Superpave

1. 50

( 38)

0.44

0.66

19 mm Superpave

2.00

(51)

0.44

0.88

Graded Aggregate Base

7.00

(17 8)

0.16

1.12

Required SN = 2.60

Proposed SN 2.66

>>> Proposed pavement is 2.2% Overdesign <<<

Remarks:

Prepared by ______D_o__n __W_a_t_s_o__n _________________________________J_u_l~y~1_6~,__2_0_0_8_______ Date

Recommended ----S-t-a-t-e--M ---a-t-e-r-i-a-l-s--&--R-e-s-e-a-r-c-h---E-n--g-in--e-e-r------------D-a--te-------------

Approved

State Consultant Design Engineer

Date

FLEXIBLE PAVEMENT DESIGN ANALYSIS

Project:

County:

P.I. no.:

Description: Rural Primary Arterial (4-Lane) - poor soil

Traffic Data (NOTE: AADTs are one-way) 24-hour Truck Percentage: 12.00% AADT initial year of design period: AADT final year of design period: Mean AADT (one-way) :

7,500 vpd (2008) 16,433 vpd (2028) 11,966 vpd

Design Loading

Mean AADT

LDF

Trucks

11,966

*

0.85 * 0.120

*

18-K ESAL 1.17

Total Daily Loads 1,429

Total predicted design period loading 1429 * 20 * 365 = 10,431,700

Design Data Terminal Serviceability Index: 2.50 Soil Support: 1.30 Regional Factor: 1.80

PROPOSED FLEXIBLE PAVEMENT STRUCTURE
---------------------------------------------------------------------------

Thickness

Structural Structural

Material

Inches

(mm)

Coefficient

Value

---------------------------------------------------------------------------

12.5 mm Superpave

1.50

(38)

0.44

0.66

19 mm Superpave

2.00

(51)

0.44

0.88

25 mm Superpave

1. 00 12.00

(25) (305)

0.44 0.30

0.44 3.60

Graded Aggregate Base

12.00

( 305)

0.16

1. 92

- - - - - --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -

Required SN = 7.25

Proposed SN = 7.50

>>> Proposed pavement is 3.4% Overdesign <<<

Remarks:

Prepared by

Don Watson

July 21, 2008

----------------------------------------------------~D~a-t~e~-----------

Recommended ----S-t-a-t-e--M ---a-t-e-r-i-a-l-s--&--R--e-se-a--r-c-h--E-n--g-i-n-e-e-r------------D-a--te-------------

Approved ---------S--t-a-t-e--C--o-n-s-u-l-t-a-n-t--D--e-s-i-g-n--E--n-g-i-n-e-e-r-------------D--a-t-e------------

FLEXIBLE PAVEMENT DESIGN ANALYSIS

Project:

County:

P.I. no.:

Description: Rural Primary Arterial (4-Lane) - good soil

Traffic Data (NOTE: AADTs are one-way) 24-hour Truck Percentage: 12.00% AADT initial year of design period: AADT final year of design period: Mean AADT (one-way):

7,500 vpd (2008) 16,433 vpd (2028) 11,966 vpd

Design Loading

Mean AADT

LDF

Trucks

11,966

*

0.85 * 0.120

*

18-K ESAL 1.17

Total Daily Loads 1,429

Total predicted design period loading 1429 * 20 * 365 = 10,431,700

Design Data Terminal Serviceability Soil Support: 6.00 Regional Factor: 1.80

Index:

2.50

PROPOSED FLEXIBLE PAVEMENT STRUCTURE
---------------------------------------------------------------------------

Thickness

Structural

Structural

Material

Inches

(mm)

Coefficient

Value

12.5 mm Superpave

1. 50

(38)

0.44

0.66

19 mm Superpave

3.00 1. 00

(7 6) (25)

0.44 0.30

1. 32 0.30

Graded Aggregate Base

12.00

(305)

0.16

1. 92

---------------------------------------------------------------------------

Required SN = 4.18

Proposed SN = 4.20

>>>Proposed pavement is 0.4% Overdesign <<<

Remarks:

Prepared by ______D__o n___W_a_t_s_o__n _________________________________ _ J_u_l~y~2~1~,~-2_0_0_8 ______ Date
Recommended ---- S-ta-- te--M--a-t-e-r~ ia~l-s--&--R-e-s-e- a- rc-h-~E-- n~ g~ in-e-e-r-----------D--a-t- e -----------
Approved ----------S-t-a-t-e--C--o-n-s-u--lt-a-n--t -D--e-s-i-g-n--E--n-g-i-n-e-e-r-------------D--a-te-------------

FLEXIBLE PAVEMENT DESIGN ANALYSIS

Project:

County:

P.I. no.:

Description: Urban Interstate Primary Arterial (6 lanes)-poor soil

Traffic Data (NOTE: AADTs are one-way) 24-hour Truck Percentage: 12.00% AADT initial year of design period: AADT final year of design period: Mean AADT (one-way) :

62,500 vpd (2008) 136,945 vpd (2028) 99,722 vpd

Design Loading

Mean AADT

LDF

Trucks

99,722

*

0.60 * 0.120

*

18-K ESAL 1. 06

Total Daily Loads 7,612

Total predicted design period loading 7612 * 20 * 365 = 55,567,600

Design Data Terminal Serviceability Index: Soil Support: 1.30 Regional Factor: 1.80

2.50

PROPOSED FLEXIBLE PAVEMENT STRUCTURE
---------------------------------------------------------------------------

Thickness

Structural

Structural

Material

Inches

(mm)

Coefficient

Value

---------------------------------------------------------------------------

12.5 mm PEM

135 lb/sy (75 kg/sm)

0.00

0.00

12.5 mm SMA

1. 50

(38)

0.44

0.66

19 mm Superpave

2.00

(51)

0.44

0.88

25 mm Superpave

1. 00 11.00

(25) (27 9)

0.44 0.30

0.44 3.30

Graded Aggregate Base

24.00

(610)

0.16

3.84

~=======================================================~==--=======--====-~

Required SN = 8.89

Proposed SN = 9.12

>>>Proposed pavement is 2.5% Overdesign <<<

Remarks:

Prepared by

Don Watson

July 16, 2008 Date

State Materials & Research Engineer

Date

State Consultant Design Engineer

Date

FLEXIBLE PAVEMENT DESIGN ANALYSIS

Project:

County:

P.I. no.:

Description: Urban Inters tate Primary Arter i al (6 lanes)

Traffic Data (NOTE: AADTs are one-way) 24-hour Truck Percentage: 12.00% AADT initial year of design period: AADT final year of design period: Mean AADT (on e -w a y):

62,500 vpd (200 8 ) 136,945 vpd (2028) 99,722 vpd

Design Loading

Mean AADT

LDF

Trucks

99,72 2

*

0. 60 * 0.120

*

18-K ESAL 1. 06

Total Daily Loads 7,612

Total predicted design period loading 7612 * 20 * 365 = 55,567,600

Design Data Terminal Serviceability Index: Soil Support: 6.00 Regional Factor: 1.80

2.50

PROPOSED FLEXIBLE PAVEMENT STRUCTURE
---------------------------------------------------------------------------

Thickness

Structural

Structural

Material

Inches

(mm)

Coefficient

Value

===========================================================================

12.5 mm PEM

135 lb/sy (75 kg/sm)

0.00

0.00

12.5 mm SMA

1. 50

(38)

0.44

0.66

19 mm Superpave

2.00

(51)

0.44

0.88

25 mm Superpave

1. 00 5.00

(2 5) (127)

0.44 0.30

0.44 1. 50

Graded Aggregate Base

12.00

(305)

0.16

1. 92

===========================================================================

Required SN = 5.34

Proposed SN = 5.40

>>> Proposed pavement is 1.0% Overdesign <<<

Remarks:

Prepared by

Don Watson

July 16, 2008 Date

Recommended ---- S-t- a- t e--M --a-t-e-r~i~ a-l s--&--R-- e s-e-a-r- c h-~E-n-g~i-n-e-e-r----------~ D~a-t-e-----------

Approved

--------------------------------------~---------------------------------

State Consultant Design Engineer

Date

Watson, D.E., J.R. Moore, D. Jared, andP. Wu
APPENDIXE M-EPDG PAVEMENT DESIGNS

'

Input Summary: Project Low volume-2-3-6-poor-default.dgp 10/14/2008 11 :44 AM

Project: Low volume-2-3-6-poordefault.dgp

General Information
Design Life Base/Subgrade construction: Pavement construction: Traffic open: Type of design
Analysis Parameters

20 years May, 2008 July, 2008 July, 2008 Flexible

Description : Rural Minor Arterial - poor soil

1 of 10

Performance Criteria
lnitiaiiRI (in/mi) TerminaiiRI (in/mi) AC Surface Down Cracking (Long. Cracking) (ftlmile): AC Bottom Up Cracking (Alligator Cracking)(%): AC Thermal Fracture (Transverse Cracking) (ftlmi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in): Permanent Deformation (Total Pavement) (in): Reflective cracking(%):

Limit Reliability

63

172

90

2000

90

25

90

1000

90

25

90

0.5

90

0.75

90

100

Location: Project ID: Section ID:
Date:

Low Volume Highway
Local Routes and Streets 6/9/2008

Station/milepost format: Station/milepost begin: Station/milepost end: Traffic direction:

North bound

Default Input Level
Default input level

Level 3, Default and historical agency values.

Traffic

Initial two-way AADTT:

240

Number of lanes in design direction:

1

Percent of trucks in design direction (%):

50

Percent of trucks in design lane(%):

100

Operational speed (mph):

55

Traffic-- Volume Adjustment Factors

Monthly Adjustment Factors

(Level 3, Default MAF)

Month January February

. Class 4 1.00 1.00

Class 5 1.00 1.00

Class 6 1.00 1.00

Vehicte,.cJass
Class7 . Class s. Ciass 9, : (:las~ 1.0 G.Ia$s:11 Clas.s. f2 crass 13

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

March

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Input Summary: Project Low volume-2-3-6-poor-default.dgp 10/14/2008 11 :44 AM

2 of 10

April May June July August September October November December

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i.OO

i .OO i. OO

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Vehicle Class Distribution

(Level 3, Default Distribution)

AADTT distribution by vehicle class

Class 4

3.3%

Class 5

34 .0%

Class 6

11.7%

Class 7

1.6%

Class 8

9.9%

Class 9

36.2%

Class 10

1.0%

Class 11

1.8%

Class 12

0.2%

Class 13

0.3%

Hourly truck traffic distribution blY pen.od beg.mm.ng:

Midnight

2.3% Noon

5.9%

1:00 am

2.3% 1:00pm

5.9%

2:ooam

2.3% 2:00 piJJ

5.9%

3:00am

2.3% 3:0"0 pm

5.9%

4:00am

2.3% 4:oopm

4.6%

p:OO am

2.3% o:oopm.

4:6%

6:00 ain

5.0% 6:00 pril

4.6%

7:00am
a:oo am

5.0% 7:QO.pn) 5.0% 8:00 pri't

4.6% 3.1%

9:00am
1o:oo am

5.0% 9:00pm 5.9% 10:00 pm

3.1% 3.1%

11 :ooam

5.9% 11 :00 pm

3.1%

Traffic Growth Factor

Vehicle Class. Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

Growth Rate 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth Function Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound

Traffic --Axle Load Distribution Factors
Level3: Default

Traffic -- General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

10

Design lane width (ft):

12

Number of Axles per Truck

VehiCle
Cl ~ss
Class 4

Single Tandem ' Tridem

Axle

& le ' Axle

1.00

0.00

0.00

Quad Axle.
0.00

Input Summary: Project Low volume-2-3-6-poor-default.dgp 10/14/2008 11 :44 AM

3 of 10

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.00

0.00

0.00

0.00

1.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

2.44

0.44

0.00

0.00

1.07

1.92

0.10

0.00

1.00

2.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

3.00

0.00

0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions,ft):

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi):

120

Average Axle Spacing

Tandem axle(psi):

51.6

Tridem axle(psi):

49.2

Quad axle(psi):

49.2

Climate
icm file:
Latitude {degrees.minutes) Longitude (degrees.minutes) Elevation {ft) Depth of water table {ft)

C:\DG2002\Projects\GDOT M-E Design\Atlanta Airport.icm 33 .38 -84 .26 974 50

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-40D G* based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 -- Asphalt concrete
Material type: Layer thickness (in):

General Properties

General

Reference

temperature

(F 0 ):

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

Poisson's ratio:

Asphalt concrete 1.5
70
10.9
6
145.1 0.35 (user entered)

Input Summary: Project Low volume-2-3-6-poor-default.dgp 10/14/2008 11 :44 AM

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 16

Cumulative % Retained #4 sieve:

36

% Passing #200 sieve:

6

Asphalt Binder Option: A VTS:

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

High temp.

Thermal Cracking Properties Average Tensile Strength at 14F: Mixture VMA (%) Aggreagate coeff. thermal contraction (in .lin.) Mix coeff. thermal contraction (in./in./F):

ow

Load Temp.

Tim~

-4oF

(s~) . ..(1/p.si)

1 2.7E-07

2 2.96E-07

5 3.33E-07

10 3.65E-07

20 3.99E-07

50 4.5E-07

100 4.92E-07

Mia . Temp. 14F (1/psi) 4.26E-07 4.96E-07 6.05E-07 7.04E-07 8.19E-07
1E-06 1.16E-06

H.lgn Temp.
32F (1/psi) 5.74E-07 7.31E-07 1.01E-06 1.28E-06 1.63E-06 2.25E-06 2.86E-06

393.04 16.9 0.000005 0.000013

Layer 2 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ):
Volumetric Properties as Built Effective binder content(%):

Asphalt concrete
2
70 10.3

4 of 10

Input Summary: Project Low volume-2-3-6-poor-default.dgp 10/14/2008 11:44 AM

Air voids(%): Total unit weight (pcf):

6 146.4

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-Fo): Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 32

Cumulative % Retained #4 sieve:

49

% Passing #200 sieve:

5

Asphalt Binder Option: A VTS:

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

temp.
oc

Layer 3 --Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete
3

General Properties

General

Reference temperature (F0 ) :

70

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

8.3
6
148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-Fo): Heat capacity asphalt (BTU/Ib-F0 ):

0.67
0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 21

Cumulative % Retained 3/8 inch sieve: 39

Cumulative % Retained #4 sieve:

45

% Passing #200 sieve:

5

5 of 10

Input Summary: Project Low volume-2-3-6-poor-default.dgp 10/14/2008 11 :44 AM

Asphalt Binder Option : A VTS :

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

6 of 10

Layer 4 -- Crushed stone Unbound Material: Thickness(in):

Crushed stone 6

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):

Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 30000

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

1 6
No 8.7 16.7 48.7 0.1152 0.5715 1.417 9.111 26.11

Si ~ve
0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16

Percent Passing
8.7 12.9

Input Summary: Project Low volume-2-3-6-poor-default.dgp 10/14/2008 11 :44 AM

#10 #8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 21/2" 3" 31/2" 4"

33.8
72.7 88.8 100 100
100 100

Calculated/Derived Parameters Maximum dry unit weight (pet): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fUhr): Optimum gravimetric water content (%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Pare~ meters a b
c
Hr.

Value 3.7678 1.7964 0.74507 117.4

127.9 (derived) 2.70 (derived) 0.02801 (derived) 7.0 (derived) 59.9 (calculated)
Default values

Layer 5 -- A-7-6
Unbound Material: Thickness(in):
Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):
ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

A-7-6 Semi-infinite
Level3 ICM inputs (ICM Calculated Modulus) 0 .35 0.5 11500
30 51 No 27.6 87.8 100 0.001101 0.01212 0.08053 0.196 0.6547

7 of 10

Input Summary: Project Low volume-2-3-6-poor-default.dgp 10/14/2008 11 :44 AM

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10 #8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 2 1/2" 3" 31/2"
4"

Percent Passing
27.6
68 .2
87.8
93 99.4 100 100 100 100 100 100 100 100
100 100

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fVhr): Optimum gravimetric water content (%): Calculated degree of saturation (%):

Soi! water characteristic curve parameters:

Parameters a
b
c
Hr.

Value
101.85 0.72477 0.25918
500

120.7 (derived) 2. 70 (derived) 6.814e-006 (derived) 10.6 (derived) 72.5 (calculated)
Default values

Distress Model Calibration Settings - Flexible

Level 3: NCHRP 1-37A coefficients (nationally

AC Fatigue

calibrated values)

k1

0.007566

k2

3 .9492

k3

1.281

AC Rutting k1

Level3: NCHRP 1-37A coefficients (nationally calibrated values) -3.35412

8 of 10

Input Summary: Project Low volume-2-3-6-poor-default.dgp 10/14/2008 11:44 AM

k2

1.5606

k3

0.4791

Standard Deviation Total Rutting (RUT):

0.24*POWER(RUT,0 .8026)+0 .001

Thermal Fracture k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std . Dev. (THERMAL):

0.1468 *THERMAL+ 65.027

CSM Fatigue k1
k2
Subgrade Rutting Granular: k1 Fine-grain: k1
AC Cracking AC Top Down Cracking C1 (top) C2 (top) C3 (top) C4 (top)
Standard Deviation (TOP)

Level3: NCHRP 1-37A coefficients (nationally calibrated values) 1 1
Level3: NCHRP 1-37A coefficients (nationally calibrated values)
2.03
1.35
7 3.5 0 1000
200 + 2300/(1+exp(1.072-2.1654*1og(TOP+0.0001)))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom)
Standard Deviation (TOP)

1 1 0 6000
1.13+13/(1 +exp(7.57-15.5*1og(BOTIOM+0.0001)))

CSM Cracking C1 (CSM) C2 (CSM) C3 (CSM) C4 (CSM)
Standard Deviation (CSM)

1 1 0
1000
CTB*1

IRI

9 of 10

Input Summary: Project Low volume-2-3-6-poor-default.dgp 10/14/2008 11 :44 AM

IRi HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40
0.4
0.008 0.015

IRI HMAIPCC Pavements C1(HMA/PCC) C2(HMA/PCC) C3(HMA/PCC) C4(HMA/PCC)

40.8 0.575 0.0014 0.00825

10 of 10

Low volume-2-3-6-poor-default. dgp 10/14/2008 11 :58 AM

1 of 1

Surface Down Cracking -Longitudinal

3000
2700 -1

I
I
I
j
-'-----..i-~.- -~-

.



___ .......I.,.__...,_.

"" ,).. ~

''

----+-- ....,...,,., ,.' -~

., :~ -wo.---. ~~- . __ ,.,. J ., __

2400 ~--

.-..:-------1------- l--
r

.------------ ---- - ..- . - - ! 1 -- ----- --- -- ;i._.-- -----

+- - - - 2100

-!-----------i'-

, _

_

_

_

'
_!_

__

---

~ E ~ 0'1 1800 ~ c o
.C_IS
0 1500

--

CCIS
j-.a5- 1200

900

I ~

I .

I '

;1 _ _____ _ ___rt _ _____ ..-j---

I ,

,

; ! I

,

,

j

-- -~-- --

I

,. ' I - .....-+'r ----- -1'-- ---------;.--

l

:

I

I

I

! :

--t- - .......... -- . --- ..... -- ~.. ---- ...

I
l
:

I ---!' -- l'

.

i

_ I
_L_,., -
'

--,-----
'

--..-- ----1--;~_ji ---..-;..

--. ...... ~--.. --

!

600

.. ....,-

_ _I_

-surface
= -o- Depth 0.5"
--Surface at Reliability
-Design Limit

300
0 ~ Ill 0

i

, l

24

48

'"I"

:-----

----1.....

. '

'iii"" r ihiiiillihiiijmmmuaallllll"/"m"'""m"fi ' iiiil!!!l!lll""".'m";;""""""""lw"""";;;""""

I

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Low volume-2-3-6-poor-default.dgp 10/14/2008 11 :54 AM

1 of 'l

Bottom Up Cracking - Alligator

100

90 -l-



----t--- ---~ ---~---~

- -- ~-

.,.,... - ,_ . -j--~-~

~--"'

1
i

so

I

-.- --- --~

-- - - ' '1 '

I

_ 70 i

I

-.0 _~ o 60 ~_____;I _

C)

I

1
1-------- i- - - - ~--------L--- .--\---

i .

l I

l i

I

___., i i

---. I ____..

---"-- ... --- -=---... - - ! -----, -- -

r:::

I

32

I

I

(.)
~
(...).
-0;a

50

-1--T. ------:i-
: l.

.!21 40

l

-;

-------:-- . . . . . ;- -I~-----I--r---,I~----w--:I-

I

I l

-

l
;

--J!-- - - - +------1 -~-----;----.- --- ~--

<(
I l
30 +-----".,

;

. -

!-

j
i l

. !
~
I

f i
I
!

I
I

) t
t
:

I

'!"----------~!----:"----t--------;--

---- --

t

,





I

I
1

I

20 -t~---~: -

-I

1 ,

l

i

~-~ --- ~

\ ;

-- - -------1I

I . -~I --- l- -~.----->---

~----__.L.. --.--

!
-- -- -~- --~

,

l

.

.

.

10

I
l--

. 1 ... ...___,~-----

I
r--r--

;I ----:J---~----~----

!

0 1;

i !
iii!

t

!

t' j

l
i

l
i

I
I

., 'I@ =>

I



"'"'

.

(
\

I


0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

-Maximum Cracking -Bottom Up Reliability -Maximum Cracking Limit

Low volume-2-3-6-poor-default.dgp 10/14/2008 12:01 PM

0.80



Permanent Deformation: Rutting

.



1 of 1

0.70 - -

AC Rutting Design Value = 0.5 Total Rutting Design Limit= 0.75

0.60

.

- --- - -

90%;Reliability

~~::.:~::~ ~~~-;..;.-....~..........~..-- :;::~~;;;;~ - .. I

1 ;

~ i

:

j

0.50 -----;------+-----~-L.--~- --~ ~.~~-- - -- -~-- ~ - -. ____,.

c

I

I

;

.. -~~- - -- ~0% Reliability

:.::.
J::
c..
C1)

~<D:J:D:~Jlrr--

i

. '

r'--. ;.- -

--- ~ ____,._

-

';, 0.40
E c
::::J
0::: 0.30

i
,1.

Subgrade
-- -- - - - - ~--

I ' ---- ~..- " .
I

--- l ------..- ! ....

. .........,....."",_, .., ,-~ -----

)
_ I
!.._-----_..._.._, -.... "' ~

0.10 ;

--

L,.,., ! """' '

0.00

0

24

- -1-- - - ---~ - -- - -~ -- -- - - - - ---!,
! """' "'"'J"""'"' 00"""":!!lliliiiiiil"11 """"':""""' "'"'""" """""' ,,.,/,

____ HMA _.

-- ---- -~-----:----

" "" "'"""" "' ""'"""'~ A~~~;~~te Base

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Input Summary: Project Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:05 PM

Project: Rural Minor-2-7-12-pooractual.dgp

General Information
Design Life Base/Subgrade construction: Pavement construction: Traffic open: Type of design
Analysis Parameters

20 years May, 2008 July, 2008 July, 2008 Flexible

Description: Rural Minor Arterial-poor soil-actual data

1 of 16

Performance Criteria
lnitiaiiRI (in/mi) TerminaiiRI (in/mi) AC Surface Down Cracking (Long. Cracking) (ft/mile) : AC Bottom Up Cracking (Alligator Cracking) (%): AC Thermal Fracture (Transverse Cracking) (fUmi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in): Permanent Deformation (Total Pavement) (in): Reflective cracking (%):

Limit Reliability

63

172

90

2000

90

25

90

1000

90

25

90

0.5

90

0.75

90

100

Location: Project ID: Section ID:

Rural Minor Arterial-poor soil-actual data

Date:

6/9/2008

Station/milepost format: Station/milepost begin: Station/milepost end : Traffic direction:

North bound

Default Input Level
Default input level

Level 3, Default and historical agency values.

Traffic

Initial two-way AADTT:

240

Number of lanes in design direction:

1

Percent of trucks in design direction(%):

50

Percent of trucks in design lane(%):

100

Operational speed (mph):

55

Traffic --Volume Adjustment Factors

Monthly Adjustment Factors

(Level 3, Default MAF)

Month

Vehicle Glass
Class 4 Clas_s 5 Class s Class 7 Cla~s fl Class 9 . Clas$ to

January

1.00

1.00

1.00

1.00

1.00

1.00

1.00

February

1.00

1.00

1.00

1.00

1.00

1.00

1.00

March

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Class 1~1-- -Giass-, 12

1.00

1.00

1.00

1.00

1.00

1.00

Class 13 1.00 1.00 1.00

Input Summary: Project Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:05 PM

April

1.00

1.00

1.00

1.00

1.00

May

1.00

1.00

1.00

1.00

1.00

June

1.00

1.00

1.00

1.00

1.00

July

1.00

1.00

1.00

1.00

1.00

August

1.00

1.00

1.00

1.00

1.00

September

1.00

1.00

1.00

1.00

1.00

October

1.00

1.00

1.00

1.00

1.00

November

1.00

1.00

1.00

1.00

1.00

December

1.00

1.00

1.00

1.00

1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 of 16

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Vehicle Class Distribution

(Level 1, Site Specific Distribution )

AADTT distribution by vehicle class

Class 4

0.0%

Class 5

13.9%

Class 6

15.5%

Class 7

0.2%

Class 8

5.6%

Class 9

60.7%

Class 10

1.1%

Class 11

2.3%

Class 12

0.5%

Class 13

0.2%

Hourly truck traffic distribution

by -~e nod begmnmg:

Midnight

2.3% Noon

5.9%

1:00am

2.3% 1:00pm

5.9%

2:00 arn

2.3% 2:00pm

5.9%

3:00am

2.3% 3:00pm

5.9%

4:00 ani

2.3% 4:00pm

4.6%

5:00am

2.3% 5:00pm

4.6%

6:00am

5.0% 6:00.pm

4.6%

7:00am

5.0% 7:00pm

4.6%

8:00am

5.0% 8:00pm

3.1%

9:00am

5.0% 9:00pm

3.1%

10:00 am

5.9% 10:00 pm

3.1%

11:00 am

5.9% 11 :00 pm

3.1%

Traffic Growth Factor

Vehicle Class Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 crass 11 Class 12 Class 13

Growth Rate 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth Function Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound

Traffic -- Axle Load Distribution Factors
Level3: Default

Traffic -- General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

1 0

Design lane width (ft):

12

Number of Axles per Truck

Vehicle Glass Class 4

Single Tandem Tridem

Axle

Axle

Axle

2.00

0.00

0.00

Quad Axle
0.00

Input Summary: Project Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:05 PM

3 of 16

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.03

0.00

0.00

0.00

1.00

1.00

0.00

0.00

0.00

0.00

0.00

1.00

2.46

0.46

0.00

0.00

1.08

1.93

0.00

0.00

1.00

2.00

0.50

0.00

5.00

0.00

0.00

0.00

4.00

1.00

0.00

0.00

2.00

1.00

0.00

0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions,ft):

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi) :

120

Average Axle Spacing Tandem axle(psi): Tridem axle(psi): Quad axle(psi):

51 .6 49 .2 49.2

Climate
icm file:
Latitude (degrees.minutes) Longitude (degrees.minutes) Elevation (ft) Depth of water table (ft)

C:\DG2002\Projects\GDOT M-E Design\Atlanta Airport.icm 33 .38 -84.26 974 50

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-37A viscosity based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ):
Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):
Poisson's ratio:

Asphalt concrete
1.5
70
10.9 6
145.1
0.35 (user entered)

Input Summary: Project Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:05 PM

Thermal Properties

Thermal conductivity asphalt (BTU/hr-ft-F0 ) :

0.67

Heat capacity asphalt (BTU/Ib-F o):

0.23

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature OF
14 40 70 100 130

0.1
855234 566220 155484 42360 10000

0.5 866483 741295 258053 76594 18079

Mixture E~ (psi)

1

5

880544 993030

821334 1009408

309866 457657

103212 178704

25732 54139

10 1133637 1092157 532850 221330
69651

25 1555460 1219071 677287 297097
91155

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data
0 0

Test Softening point (P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp. OF
120 140 275 77

.
Thermal Crackmg Properties Average Tensile Strength at 14F: Mixture VMA (%) Aggreagate coeff. thermal contraction (in./in.) Mix coeff. thermal contraction (in./in./F):

Binder P.roperty
13000 2200 450 1.03
474.77 16.9 0.000005 0.000013

Load Tinie (sec)
1 2
5
10 20 50 100

LOW
Temp. 4F
(1'/psi) 3.34E-07 3.76E-07
4.4E-07 4.95E-07 5.57E-07 6.51 E-07 7.32E-07

Mid.
Temp~
14F (1/psl) 5.04E-07 6.04E-07 7.68E-07 9.21E-07 1.11 E-06 1.41 E-06 1.69E-06

ttlgh Temp. 32F (1/psi) 6.74E-07 9.15E-07 1.37E-06 1.86E-06 2.53E-06 3.78E-06 5.14E-06

Layer 2 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ) :

Asphalt concrete
2
70

4 of 16

Input Summary: Project Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:05 PM

Volumetric Properties as Built Effective binder content(%): Air voids (%) : Total unit weight (pcf):

10.3 6 146.4

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-Fo) :

0.67 0.23

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
14
40 70 100 130

0.1
948063 631790 199557 42729 12326

0.5
958932 805188 316779 80331 23153

Mixture E* (psi)

1

5

972518 1081207

884998 1078331

376079 538752

107691 193954

33357 69403

10 1217068 1161103 616747 238578
91706

25
1624650 1275247 727400 307156 127327

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0 0

T~st
Softening point (P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp.
Of
120 140 275
77

Binder Property
13000 2200 450 1.03

Layer 3 --Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete 7

General Properties

General

Reference temperature (F0 ):

70

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

8.3 6 148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ): Heat capacity asphalt (BTU/Ib-Fo):

0.67 0.23

5 of 16

Input Summary: Project Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:05 PM

Asphalt Mix

Number of temperatures:

5

Number of frequencies :

6

Temperature
OF
14 40 70 100 130

0.1
840879 573018 200017 46395 10000

0.5
851932 753399 316664 80273 15326

Mixture E* (psi)

1

5

865748 976279

833300 1031157

374644 539280

106866 195998

22569 46188

10
1114443 1111954 622684 247581 59240

25
1528934 1272170 769096 316573 71922

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0 0

Test Softening point (P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp.
OF
120 140 275 77

Binder Property
13000 2200 450 1.03

Layer 4 -- Crushed stone
Unbound Material: Thickness(in):

Crushed stone 12

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):

Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 13304

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

1 6
No 8.7 16.7 48.7 0.1152 0.5715 1.417 9.111 26.11

SitW~ .
0.001mm 0.002mm 0.020mm

Perc~nt Passhig

6 of 16

Input Summary: Project Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:05 PM

#200 #100 #80 #GO #50 #40 #30 #20 #16 #10
#8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 21/2" 3" 31/2" 4"

8.7
12.9
33 .8
72.7 88.8 100 100 100 100

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ft/hr): Optimum gravimetric water content (%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a b
c
Hr.

Value 3.7678 1.7964 0.74507 117.4

127.9 (derived} 2.70 (derived) 0.02801 (derived) 7.0 (derived) 59.9 (calculated)
Default values

Layer 5 -- A-7-6
Unbound Material: Thickness(in) :
Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):
ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL)

A-7-6 Sem i-infinite
Level 3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 3048
30 51

7 of 16

Input Summary: Project Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:05 PM

Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%) : 010(mm) D20(mm) 030(mm) D60(mm) D90(mm)

No
79 .1 88 .8 94 .9 0.0002309 0.0005333 0.001231 0.01516 0.6616

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10 #8 #4 3/8" 1/2" 3/4"
1" 1 1/2"
2" 2 1/2"
3" 3 1/2"
4"

Percent Passing
79.1 84.9
88 .8
93 94.9 96.9 97.5 98.3 98.8 99.3 99.6
99.9 99.9

Calculated/Derived Parameters Maximum dry unit weight (pet): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fVhr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters. a
b
c Hr.

VaJt.e
136.42 0.51828 0.032384
500

97.7 (derived) 2.70 (derived) 8.946e-006 (derived) 22.2 (derived) 82.7 (calculated)
Default values

Distress Model Calibration Settings - Flexible

8 of 16

Input Summary: Project Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:05 PM

AC Fatigue
k1
k2 k3

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 0.007566 3.9492 1.281

AC Rutting
k1
k2 k3

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) -3 .35412 1.5606 0.4791

Standard Deviation Total Rutting (RUT):

0.24*POWER(RUT,0.8026)+0 .001

Thermal Fracture
k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std. Dev. (THERMAL):

0.1468 *THERMAL+ 65.027

CSM Fatigue
k1
k2
Subgrade Rutting Granular:
k1
Fine-grain:
k1
AC Cracking AC Top Down Cracking
C1 (top) C2 (top) C3 (top) C4 (top)
Standard Deviation (TOP)

Level3: NCHRP 1-37A coefficients (nationally calibrated values) 1 1
Level3: NCHRP 1-37A coefficients (nationally calibrated values)
2.03
1.35
7 3.5 0 1000
200 + 2300/(1+exp(1.072-2.1654*1og(TOP+0.0001 )))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom)
Standard Deviation (TOP)

1 1 0 6000
1.13+13/(1+exp(7.57-15.5*log(BOTTOM+0.0001 )))

CSM Cracking

9 of 16

Input Summary: Project Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:05 PM

C1 (CSivi) C2 (CSM) C3 (CSM) C4 (CSM)

1 1 0 1000

Standard Deviation (CSM) CTB*1

IRI IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40 0.4 0.008 0.015

IRI HMA/PCC Pavements C1(HMNPCC) C2(HMNPCC) C3(HMNPCC) C4(HMNPCC)

40.8 0.575 0.0014 0.00825

10 of 16

Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:07 PM

1 of 1

Surface Down Cracking - Longitudinal

3000

i

1

I

'

I

I

I

:

.

2700 -1- -

!

1-~--+-- -----~----- .~- ~-

1

I '

I
i

I
2400 -----+I l

I I
1

. I

I :

r- - :- ! _____

(

~

J.

I

I ___ _ I

21 00

--r

i

= E

!

-;; 1800 -----~-----+--

r:::

~
...cuu
0 1500 - - ---- :

.. .. - - ... . - ---

:

I l

---~ - __..._-

T> ---------I-------

I

i

:

i .

I l

-- '- - - -- I --- lI --- ---i-

-. ~ ~; -
~- - -' -

cu r:::

"0

~ 1200 - --I

:

C)

r:::

0

...J

(

900 ------r-~-~

1

!

i

--

1\ -

-

-

.. l -!--

-

--

-+I .

-~ -

-

... - ~- --------,------,~---

- -'+--

l

!

1

I

600

:
- --~i----

l
!

'

300 I

;

:: ~

!
:
-:-
'
'";. iii!

!

I I

------

_, ......_._!..... ,..,

. - _._.. ___..,-

~-..'~-~

~

~

I

I

I:: ; ; ;; ;

; -;;; -;- - -

~ u:m~

~-- --- --
iiliii!; , - -- '

-surface
= -o- Depth 0.5"
-Surface at Reliability
-Design Limit

0 -1

iiliii iii!Jii

I

I

:

'

I

ii!@O

0

24

48

72

96

120

144

168

192

21I 6

240

264

Pavement Age (month)

Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:07 PM

1 of 1

Bottom Up Cracking- Alligator

100

I

I

l

i

90 -l-

j

l
--- ---w~ - -----+----~

----~ ~-- ---l-----J_... - -- -~- -- --

.Jc....,.._.-.,~"

I I

I '

. I

t

I

I

. I I

I

80 -!1- - - + - - -- ---o-- _, ____Ii __ ----' - - - .._ - ~--I--- - --

I

!

!

____,___ _.__ ____ 70

I I ----,~ -t--

l

i_-

. - -- --- . --

~ --;- I
cen 60

!

;

--+---- II

! I

- -.-

'
t

t-~ ---- -

:~

,

I

:

,

E
(...).

50 i

~

.!2l 40

.

- - -r'---- I . .
1
I '

~---!- --

I

. :

i

-'~--------0 --+-----:- --

l

!

.

--r +---+,i - ____.;.;_ ......___-

-:-

<(
30 +- - - -

!
--~-----,-

. )

j

:

;

' . - I -~----4!---~~-...;i-- ----

---~ t--"" ___,...____ ...........,

-----

'

1

!

20 i 10

I

~--~-.- I -+-

.....

I

I

r~-

I

l I

-1 r - - -I:

.!.,..---+-~
i

~ I : - . ___ _ j_ ........

I --r-~~~ I

'

-.,! -----

I

---1~
I

-Maximum Cracking --Bottom Up Reliability

J

--Maximum Cracking Limit

1

0

0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Rural Minor-2-7-12-poor-actual.dgp 10/14/2008 12:1 0 PM
0.80

Permanent Deformation: Rutting

1 of 1

0.70

AC Rutting Design Value = 0.5 Total Rutting Design Limit= 0.75

0.60 ..J_ . -- -c - )_ _ __ -

_..lq~-~~Jl~biltty_ -- -
1-

50% Reliability

- 0.50 -'--~ -- ~ - ...&Y- - - : . - - -~1- ---~~- ...-~- -
::s=:::..

~--~-: -

...sc.:....

cQ) 0.40

- - - - J_ - - -- - -r -

I

C)
s:::

I

E

:::s

0:: 0.30

,________,~_---- ----+ ------- -..J.-- "-------:- - ---- ___ ,____.,_.......

Subgrade
--I

0.20 ;F 0.10 -l

. .....- .....---~:--~-- ._.......... '
---1it

j

I

i

I ' . ---..,... -,~.. <=--....... ,...._.,..f' _ _ _

I

'

'

- t . __. . . - ,...,.___ -,-! . ,_ __........-.. . ........... ..... .

~

1

;

I

i i
: ~--! --- -

-~--

.....

---

-

---

___ _, __

,_

-i ~--

--

- ;_ _ ,.

-

.

Aggregate Base
-- - ---------
HMA

0.00 0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Input Summary: Project Low volume-2-3-12-good-default.dgp 10/14/2008 12:12 PM

Project: Low volume-2-3-12-gooddefault.dgp

General Information
Design Life Base/Subgrade construction: Pavement construction: Traffic open: Type of design

20 years May, 2008 July, 2008 July, 2008 Flexible

Description : Rural Minor Arterial -good soil

Analysis Parameters

1 of 10

Performance Criteria
lnitiaiiRI (in/mi) Terminal IRI (in/mi) AC Surface Down Cracking (Long. Cracking) (fUmile) : AC Bottom Up Cracking (Alligator Cracking)(%): AC Thermal Fracture (Transverse Cracking) (fUmi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in): Permanent Deformation (Total Pavement) (in): Reflective cracking (%):

Limit Reliability

63

172

90

2000

90

25

90

1000

90

25

90

0.5

90

0.75

90

100

Location: Project ID: Section ID:

Low Volume Highway

Date:

6/9/2008

Station/milepost format Station/milepost begin: Station/milepost end: Traffic direction:

North bound

Default Input Level
Default input level

Level 3, Default and historical agency values.

Traffic

Initial two-way AADTI:

240

Number of lanes in design direction:

1

Percent of trucks in design direction (%):

50

Percent of trucks in design lane(%):

100

Operational speed (mph):

55

Traffic --Volume Adjustment Factors

Monthly Adjustment Factors

Month January February March

Class 4 1.00 1.00 1.00

Class5 1.00 1.00 1.00

crass s
1.00 1.00 1.00

(Level 3, Default MAF)

Vehicle Cl ~ss

Class 7 etass .s Class9

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Cl.ass 10 1.00 1.00 1.00

C!ass u
1.00 1.00 1.00

Class 12 class 1:3'

1.00

1.00

1.00

1.00

1.00

1.00

Input Summary: Project Low volume-2-3-12-good-default.dgp 10/14/2008 12:12 PM

2 of 10

April May June July August September October November December

AI.U' "U'
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AI.U' "U'
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Vehicle Class Distribution

(Level 3, Default Distribution)

AADTT distribution by vehicle class

Class 4 Class 5

1.8% 24.6%

Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12

7.6% 0.5% 5.0% 31.3% 9.8% 0.8% 3.3%

Class 13

15.3%

Hourly truck traffic distribution

by pen'od begmnlr'lg~

Midnight

2.3% Noon

5.9%

1:00am

2.3% 1:00pm

5.9%

2:00am 3: 00am

2.3% 2:oo prn 2.3% 3:00pm

5.9% 5.9%

4:ooam

2.3% 4:00pm

4.6%

5:00am

2.3% 5:00pm

4.6%

6:00am 7:00 arn

5.0% 6:00 Prh 5.0% 7:00 ptn

4.6% 4.6%

S:OOam 9:00am 10:oo am 11 :00 am

5.0% 8:00pm
5.0% ~:OQ pni
5.9% 1o:oo pm
5.9% ,11 :oo pni

3.1% 3.1% 3.1% 3.1%

Traffic Growth Factor

Vehicle Class Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

Growth Rate 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth Function Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound

Traffic -- Axle Load Distribution Factors
Level 3: Default

Traffic -- General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

10

Design lane width (ft):

12

'

Number of Axles per Truck

VehiCle Gl_ass Class 4

S!ngl:& T~ndem Tridem Quad_

AJI;I1Q.62'

'"

Axle 0 .3 9

Axle

' Axl ~

0.00

0.00

Input Summary: Project Low volume-2-3-12-good-default.dgp 10/14/2008 12:12 PM

3 of 10

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.00 1.02 1.00 2.38 1.13 1.19 4.29 3.52 2.15

0.00 0.99 0.26 0.67 1.93 1.09 0.26 1.14 2.13

0.00 0.00 0.83 0.00 0.00 0.89 0.06 0.06 0.35

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions, ft):

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi) :

120

Average Axle Spacing Tandem axle(psi): Tridem axle(psi): Quad axle(psi):

51.6 49.2 49.2

Climate
icm file:
Latitude (degrees.minutes) Longitude (degrees. minutes) Elevation (ft) Depth of water table (ft}

C:\DG2002\Projects\GDOT M-E Design\Atlanta Airport.icm 33.38 -84.26 974
3

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-40D G* based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 --Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ):
Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):
Poisson's ratio:

Asphalt concrete 1.5
70
10.9
6
145.1 0.35 (user entered)

Input Summary: Project Low volume-2-3-12-good-default.dgp 10/14/2008 12:12 PM

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-Fo):

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative% Retained 3/8 inch sieve: 16

Cumulative % Retained #4 sieve:

36

% Passing #200 sieve:

6

Asphalt Binder

Thermal Cracking Properties Average Tensile Strength at 14F: Mixture VMA (%) Aggreagate coeff. thermal contraction (in./in.) Mix coeff. thermal contraction (in./in./F):

Low

Mid.

H1gh

Load Temp. Temp. Temp.

Time -4F

14F

32F

(sec) .(1/ps i) (1/psi) (1/psi)

1 2.7E-07 4.26E-07 5.74c-07

2 2.96E-07 4.96E-07 7.31 E-07

5 3.33E-07 6.05E-07 1.01 E-06

10 3.65E-07 7.04E-07 1.28E-06

20 3.99E-07 8.19E-07 1.63E-06

50 4.5E-07' 1E-06 2.25E-06

100 4.92E-07 1.16E-06 2.86E-06

0.67 0.23
393.04 16.9 0.000005 0.000013

Layer 2 --Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete 2

General Properties

General

Reference temperature (F0 ):

70

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

10.3 6 146.4

Poisson's ratio:

0.35 (user entered)

Thermal Properties

Thermal conductivity asphalt (BTU/hr-ft-F0 ):

0.67

Heat capacity asphalt (BTU/Ib-F0 ):

0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 32

Cumulative % Retained #4 sieve:

49

4 of 10

Input Summary: Project Low volume-2-3-12-good-default.dgp 10/14/2008 12:12 PM

% Passing #200 sieve:

5

Asphalt Binder Option:
A
VTS:

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

High temp.

Layer 3 -- Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete 3

General Properties

General

Reference temperature (Fo):

70

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

8.3 6 148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ): Heat capacity asphalt {BTU/Ib-F0 ):

0.67
0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 21

Cumulative % Retained 3/8 inch sieve: 39

Cumulative % Retained #4 sieve:

45

% Passing #200 sieve:

5

Asphalt Binder Option:
A VTS:

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

temp.

5 of 10

Input Summary: Project Low volume-2-3-12-good-default.dgp 10/14/2008 12:12 PM
... ,.
10
82

Layer 4 -- Crushed stone Unbound Material: Thickness(in):

Crushed stone 12

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):

Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 30000

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve (%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

1
6 No
8.7 20 44 .7 0.1035 0.425 1.306 10.82 46.19

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10
#8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 21/2" 3" 3 .1/2" 4"

Percent Passing
8.7 12.9
20
33.8 44.7 57.2 63.1 72.7 78.8 85.8 91 .6
97.6 97.6

6 of 10

Input Summary: Project Low volume-2-3-12-good-default.dgp 10/14/2008 12:12 PM

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fUhr): Optimum gravimetric water content(%) : Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a b
c
Hr.

Value 7.2555 1.3328 0.82422 117.4

127.2 (derived) 2.70 (derived) 0.05054 (derived) 7.4 (derived) 61.2 (calculated)
Default values

Layer 5 -- A-2-4 Unbound Material: Thickness(in):

A-2-4 Semi-infinite

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):

Level 3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 21500

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve (%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

2
14 No 22.4 67.2 87.2 0.001921 0.0369 0.1115 0.3476 7.383

Si~Ve
0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20

Percent Passi~g_
22.4 42.3 67.2

7 of 10

Input Summary: Project Low volume-2-3-12-good-default.dgp 10/14/2008 12:12 PM

.,,.~
Tt"IU
#10 #8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 2 1/2"
3" 3 1/2"
4"

82 .5
87 .2 91 .6 93 .5 95 .9 97.2 98 .5 99
99 .6 99 .6

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ftlhr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a b
c
Hr.

Value 9.5043 0.64386 3.0636 189.6

124.0 (derived) 2.70 (derived) 0.0005854 (derived) 9.0 (derived) 67.5 (calculated)
Default values

Distress Model Calibration Settings - Flexible

Level 3: NCHRP 1-37A coefficients (nationally

AC Fatigue

calibrated values)

k1

0.007566

k2

3.9492

k3

1.281

AC Rutting
k1 k2 k3

Level3: NCHRP 1-37A coefficients (nationally calibrated values) -3.35412 1.5606 0.4791

Standard Deviation Total Rutting (RUT):

0.24*POWER(RUT,0.8026)+0 .001

Thermal Fracture
k1

Level3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std. Dev. (THERMAL):

0.1468 *THERMAL+ 65.027

8 of 10

Input Summary: Project Low volume-2-3-12-good-default.dgp 10/14/2008 12: 12 PM

CSM Fatigue
k1 k2

Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
1 1

Subgrade Rutting Granular:
k1 Fine-grain:
k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
2.03
1.35

AC Cracking AC Top Down Cracking
C1 (top) C2 (top) C3 (top) C4 (top)

7 3.5 0 1000

Standard Deviation (TOP) 200 + 2300/(1+exp(1.072-2.1654*1og(TOP+0.0001)))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom)
Standard Deviation (TOP)

1 1 0
6000
1.13+13/(1 +exp(7.57-15.5*1og(BOTTOM+0.0001 )))

CSM Cracking
C1 (CSM) C2 (CSM) C3 (CSM) C4 (CSM)
Standard Deviation (CSM)

1 1 0
1000
CTB*1

IRI
IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40
0.4
0.008 0.015

IRI HMA/PCC Pavements C1 (HMA/PCC) C2(HMA/PCC) C3(HMA/PCC)

40.8 0.575 0.0014

9 of 10

Input Summary: Project Low volume-2-3-12-good-default.dgp 10/14/2008 12:12 PM
f'\ f"'I"O"lC U.UUU~v

10 of 10

Low volume-2-3-12-good-default.dgp 10/14/2008 12:13 PM

1 of 1

Surface Down Cracking -Longitudinal

3000

'

l

:

I

~- i ._.___- -- l 2700 ----___II1__--- , i------~--~-'-~-- - ----t

(

____________!____ _' -- 2400

- .---- I "" ' ~~ .....

--. -- ..... ~-

- ~ ... !._...

2100

- - ---.

:::-

'

i -

=-E
Cl 1800 ~~~ - -....;---.--- --r -~ -- - - . -

- - --,--

c

I

32

(.J
0ca 1500 ~~-- -

l

I

'

I

.i- .

I

----- -

- - - - - - -

ca
:e="C 1200
Cl
s::: 0 ...J
900

- _; - ~ - - -

!

~

-- ---,
I '

600

--1

I

------j--

...__!..._. ........ -

300 LF= I

I 1
-j-~l~

i . ----"--~-----------r--'--- ---------~- -----~-----

" -l

I

!

. .!. . . , ! """""""""";""""'"'""'""";"' iliihili!jhil!lliiili!j..ililjilililllllllh........, ........,,,,,,,,

0

24

48

72

96

120

144

168

192

216

240

Pavement Age (month)

-surface
= -o- Depth 0.5"
-Surface at Reliability --Design Limit
I 264

Low volume-2-3-12-good-default.dgp
10/14/2008 12:13 PM

1 of 1

Bottom Up Cracking -Alligator

100 90 ~---

'--- - -- :

; 1
[______ _t- - - - -...,;.--- - ---~--. -- ------ - - - i

80 ; - --- -,l -

I
l
70 ----;-- - -- 4--

-~ 60

C)

:.t;;:;::
...0
C'CS
0...
~ 0
tn
-
<

50
l40 -
30

j __ l

I
I

_

:
L

_

_ __.L

.

i t
. --~I -

l.II"'

i

i

20 1

! l


f

10 1

.- I

-

I

0

0

24

48

-rI - - - - ' --
i

- - --i - - ---- -:- -- ....
--,I-

I
i -- -j------ -! --- ------ -.----- - -- -- --- -

I

.

j
--~

---''-- ---- --- - <-["

-~ -(--

J
; '

:

'
- - -i---- ---,-- -

I



'

--ll~'-- ---r- -

--.---- - - -- - ----- ----- t....---- --f--- ~-'~- ---- -

!
i-

-

l_
.

~

+i --~-

-

-Li --~---1 -

__ ___ - - _ ______ ,, .. ,........,.

. .........: .- .

,_,.

I l I ! ---f--:

~-L-!

~

jI _

__

_

I
L _
I

l

I

I

_

_ L
!

_

_

-

-

lIt-

--!-

I

--'--~ -- -~

I

hiiiillihlhiiiddl

iiliilih

II!

iihiiiii.

-Maximum Cracking -o- Bottom Up Reliability -Maximum Cracking Limit

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Low volume-2-3-12-good-default.dgp 10/14/2008 12:16 PM

0.80 0.70 ..._ 0.60 -1

Permanent Deformation: Rutting

AC Rutting Design Value = 0.5 Total Rutting Design Limit= 0.75


- ..._ l _,_. .. '- ........ ...
- - - .,___..... --- ---- --- ---!----

~ .!a~- - - ,, . -



1 of 1

- 0.50
1:
-.I:
c.
cQ) 0.40
C)
1:
E a:::I:
0.30 -j

- ------ - -,--
1

-1 '---- -

--t -

- - ---+---- - - --.------- - --- ---

l

_____L ----- -~----

!

t

- sp%Hemaoility -so%-Re1ia.bility

0.20 ++--~ .

:

Subgrade
-- ---- - ------- ------------"------------- -- -----

0.00 0

__ ______ _._

-- -- -- -- - - - -

HMA
Aggregate Base

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Input Summary: Project Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:17 PM

Project: Rural Minor-2-6-12-goodactual.dgp

General Information
Design Life Base/Subgrade construction: Pavement construction: Traffic open: Type of design

20 years May, 2008 July, 2008 July, 2008 Flexible

Description: Rural Minor Arterial-good soil-actual data

Analysis Parameters

1 of 16

Performance Criteria
Initial IRI (in/mi) TerminaiiRI (in/mi) AC Surface Down Cracking (Long. Cracking) (fUmile): AC Bottom Up Cracking (Alligator Cracking)(%): AC Thermal Fracture (Transverse Cracking) {fUmi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in): Permanent Deformation {Total Pavement) (in): Reflective cracking (%):

Limit Reliability

63

172

90

2000

90

25

90

1000

90

25

90

0.5

90

0.75

90

100

Location: Project ID: Section ID:

Rural Minor Arterial-poor soil-actual data

Date:

6/9/2008

Station/milepost format: Station/milepost begin: Station/milepost end: Traffic direction:

North bound

Default Input Level
Default input level

Level 3, Default and historical agency values.

Traffic

Initial two-way AADTT:

240

Number of lanes in design direction:

1

Percent of trucks in design direction (%):

50

Percent of trucks in design lane (%):

100

Operational speed (mph):

55

Traffic --Volume Adjustment Factors

Monthly Adjustment Factors

(Level 3, Default MAF)

Month January February March

_Class 4 1.00 1.00 1.00

Classs: , Cla$5~

1.00

1.00

1.00

1.00

1.00

1.00

Class 7 1.00 1.00 1.00

Vehicle,Ciass .

Class 8 'CI~ss 9

1.00

1.00

1.00

1.00

1.00

1.00

: Class ~Q 1.00 1.00 1.00

Class11- C.la.~s 12: Class 13 '

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Input Summary: Project Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:17 PM

2 of 16

April May June July August September October November December

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Vehicle Class Distribution

(Level 1, Site Specific Distribution )

AADTT distribution by vehicle class

Class 4

0.0%

Class 5

13.9%

Class 6

15.5%

Class 7

0.2%

Class 8

5.6%

Class 9

60 .7%

Class 10

1.1%

Class 11

2.3%

Class 12

0.5%

Class 13

0.2%

Hourly truck traffic distribution
b>Y pen.odbegm. m.ng:

Midnight

2.3% Noon

5.9%

1:00am 2:00am

2.3% 1:00pm 2.3% 2:0Q pm

5.9% 5.9%

3:00am

2.3% '3:00pm

5.9%

4:00am

2.3% 4:00pm

4.6%

5:00am

2.3% 5:oo prn

4.6%

6,:00 am .
7:00 qni
8:00am

5.0% 6:oopm
5.0% T:oo pm
5.0% 8:00pm

4.6% 4.6% 3.1%

9:ooam
1o:oo am

5.0% 9:oopm 5.9% 1:0:00pm

3.1% 3.1%

11:oo:am

5.9% 11:00 pm

3.1%

Traffic Growth Factor

Vehicle Class Class4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

Growth Rate. 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth Function Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound

Traffic -- Axle Load Distribution Factors
Level3: Default

Traffic --General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

10

Design lane width (ft):

12

Number of Axles per Truck

Vehic[e I @lass Class 4

Slrigle Tandem Tridem

Axle

Axle

Axle -

2.00

0.00

0.00

Quad ~le
0.00

Input Summary: Project Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:17 PM

3 of 16

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.03 1.00 0.00 2.46 1.08 1.00 5.00 4.00 2.00

0.00 1.00 0.00 0.46 1.93 2.00 0.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions, ft):

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi) :

120

Average Axle Spacing Tandem axle(psi): Tridem axle(psi): Quad axle(psi):

51.6 49.2 49.2

Climate
icm file:
Latitude (degrees.minutes) Longitude (degrees.minutes) Elevation (ft) Depth of water table {ft)

C:\DG2002\Projects\GDOT M-E Design\Atlanta Airport.icm 33.38 -84.26 974 50

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-37A viscosity based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 --Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ) :
Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):
Poisson's ratio:

Asphalt concrete 1.5
70
10.9
6
145.1 0.35 (user entered)

Input Summary: Project Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:17 PM

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-F0 ) :

0.67 0.23

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
14 40 70 100 130

0.1
855234 566220 155484 42360 10000

0.5
866483 741295 258053 76594 18079

Mixture E* (psi)

1

5

880544 993030

821334 1009408

309866 457657

103212 178704

25732 54139

10
1133637 1092157 532850 221330 69651

25
1555460 1219071 677287 297097 91155

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0
0

Test Softening point (P) Absolute viscosityjP) Kinematic viscosity (CS) Specific gravity

Temp.
OF
120 140 275 77

Binder Property
13000 2200 450 1.03

Thermal Crackmg Properties Average Tensile Strength at 14F: Mixture VMA (%) Aggreagate coeff. thermal contraction (in./in.) Mix coeff. thermal contraction (in./in./F):

474.77 16.9 0.000005 0.000013

Loa~
Time ( s e.c ) ,
1 2 5 10 20 50 100

.Low

Mid.

Temp. Temp.

-4oF

14"F

(1'/psi) ' (1/psi)

3.34E-07 5.04E-07

3.76E-07 6.04E-07

4.4E-07 7.68E-07

4.95E-07 9.21E-07

5.57E-07 1.11 E-06

6.51E-07 1.41 E-06

7.32E-07 1.69E-06

High T emp.
32"F (.1/psi) 6.74E-07 9.15E-07 1.37E-06 1.86E-06 2.53E-06 3.78E-06 5.14E-06

Layer 2 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ) :

Asphalt concrete
2
70

4 of 16

Input Summary: Project Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:17 PM

Volumetric Properties as Built Effective binder content(%): Air voids (%): Total unit weight (pet):

10.3
6
146.4

Poisson's ratio :

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
14 40 70 100 130

0.1 948063 631790 199557 42729 12326

0.5 958932 805188 316779 80331 23153

Mixture E* (psi)

1

5

972518 1081207

884998 1078331

376079 538752

107691 193954

33357 69403

10 1217068 1161103 616747 238578
91706

25 1624650 1275247 727400 307156 127327

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0 0

Test Softening point (P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp.
OF
120 140 275 77

Binder Property_
13000 2200 450 1.03

Layer 3 -- Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete 6

General Properties

General

Reference temperature (F0 ):

70

Volumetric Properties as Built Effective binder content(%): Air voids(%}: Total unit weight (pcf}:

8.3
6
148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 } : Heat capacity asphalt (BTU/Ib-Fo}:

0.67 0.23

5 of 16

Input Summary: Project Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:17 PM

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
14 40 70 100 130

().1 840879 573018 200017 46395 10000

0.5 851932 753399 316664 80273 15326

Mixture E* (psi)

1

.5

865748 976279

833300 1031157

374644 539280

106866 195998

22569 46188

10 1114443 1111954 622684 247581
59240

25 1528934 1272170 769096 316573
71922

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0 0

Test Softenin_g p_oint(P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp.
OF
120 140 275 77

Binder Property
13000 2200 450 1.03

Layer 4 -- Crushed stone
Unbound Material: Thickness(in):

Crushed stone 12

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):

Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 13304

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve (%): D10(mm) D20(mm) D30{mm) D60(mm) D90(mm)

, Si'e:v~ 0.001mm 0.002mm 0.020mm

; Per~eot .~ass it1 g

1 6
No 8.7 16.7 48.7 0.1152 0.5715 1.417 9.111
26.11

6 of 16

Input Summary: Project Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:17 PM

#200 #100 #80 #60 #50 #40 #30 #20 #16 #10 #8 #4 3/8" 1/2" 3/4"
1" 11/2"
2" 21/2"
3" 3 1/2"
4"

8.7
12.9
33.8
72.7 88.8 100 100 100 100

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fUhr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters
a
b
c
Hr.

Valu.e
3.7678 1.7964 0.74507 117.4

127.9 (derived) 2.70 (derived) 0.02801 (derived) 7.0 (derived) 59.9 (calculated)
Default values

Layer 5 -- A-2-4
Unbound Material: Thickness(in):
Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure, Ko: Modulus (input) (psi):
ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL)

A-2-4 Semi-infinite
Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 15914
2 14

7 of 16

Input Summary: Project Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:17 PM

Compacted Layer Passing #200 sieve(%) : Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

No 22.4 67.2 87.2 0.001921 0.0369 0.1115 0.3476 7.383

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10
#8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 2 1/2" 3" 3 1/2" 4"

Percent Passing
22.4 42.3
67.2
82.5 87.2 91.6 93.5 95.9 97.2 98.5 99
99.6 99.6

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ft/hr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a b
c
Hr.

Value
9.5043 0.64386 3.0636
189.6

124.0 (derived) 2.70 (derived) 0.0005854 (derived) 9.0 (derived) 67.5 (calculated)
Default values

Distress Model Calibration Settings - Flexible

8 of 16

Input Summary: Project Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:17 PM

AC Fatigue
k1
k2 k3

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 0.007566 3.9492 1.281

AC Rutting
k1
k2 k3

Level3: NCHRP 1-37A coefficients (nationally calibrated values) -3.35412 1.5606 0.4791

Standard Deviation Total Rutting (RUT) :

0 . 2 4 * P O W E R ( R U T , 0 .8026)+0.001

Thermal Fracture
k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std. Dev. (THERMAL):

0.1468 *THERMAL+ 65.027

CSM Fatigue
k1
k2
Subgrade Rutting Granular:
k1
Fine-grain:
k1
AC Cracking AC Top Down Cracking
C1 (top) C2 (top) C3 (top) C4 (top)
Standard Deviation (TOP)

Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
1 1
Level3: NCHRP 1-37A coefficients (nationally calibrated values)
2.03
1.35
7 3.5 0 1000
200 + 2300/(1 +exp(1.072-2.1654*1og(TOP+0.0001)))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom)
Standard Deviation (TOP)

1 1 0 6000
1.13+13/(1 +exp(7.57-15.5*1og(BOTIOM+0.0001 )))

CSM Cracking

9 of 16

Input Summary: Project Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:17 PM

C1 (CSM) C2 (CSM) C3 (CSM) C4 (CSM)

1 1 0 1000

Standard Deviation (CSM) CTB*1

IRI
IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40
0.4 0.008 0.015

IRI HMA/PCC Pavements C1 (HMA/PCC) C2(HMA/PCC) C3(HMA/PCC) C4(HMA/PCC)

40.8 0.575 0.0014 0.00825

10 of 16

Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:18 PM

1 of 1

Surface Down Cracking -Longitudinal

3000

1

. i

' 1



'

'

2700

I ;

j

-

-

-

..
1

-

-

--.

-

-

I------.f--.,..,.__-~--

I

I



.

.

.

.-.-.

--2...i.~-

.

_ ... __

-

--

~......:...:.-

;. __,.._......_....,;.___. -

-----~i.- -

2400 ' ---.J

I

--:- I

;

I

--~----r --

_.:__ ---- --!--

----+ -- - 2100 +---~--
:::-

:
_____ _,.. !__ - -

I
__j_ -
I

~
-; 1800
:.c;:

---r---It

__I_

!1

. . ------~- - - --;-- .

!

- - - - ,_l_, .... ----t-

1

1

'

I

(J
0ca 1500 -1- - -

t

'I

:

-i -

;

'

I

l - -;--- j

i

_ _l_

I

cca

l

"C
~ 1200

-1 --- - -,

Cl
s::: 0 ...J
900

I !

I
~-~'

---.!--

--. --...

.
---~---~--+~ -----;~~------- . .,..:.--- "' . _. ,._. .------~ ' ..... --": ' '<

-surface -Depth= 0.5" -Surface at Reliability --Design Limit

300~

!

0 j

" II

'

:

i

I

'-
' I

- ~I: - - -<II' -- - ' ... .'... -- - ....... - .....

I ~'"

,

""'i' """"""""""";"'"""""'""""':llliil"'iii" llll!i!l'f""m"m """

I

0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:18 PM

1 of'

100

l
90 -l-----r1 I

80 +

~

70 -1



--0~ 60 ___,__

C)

c

:i:

-.uC.'G.
u...

50 -1

0

C'G

-~ 40 -1

~

30 i---~-r

20

Bottom Up Cracking -Alligator

i

!
j
I

I ! ; r

'

i

I



i

--~-1-~--, ~.......1i~-------.:---J-I ...-

; I

l

I '

i \

' I

!
'

!

t

i

:

-

.'.

.

...........

I
~~""""" +





I

--~ ..- - - + -

---I

----;; -----~I:--- ~

:

_____ -

___ ,.,. .

! -t-- I

1
.- --- ---- ~- - ----T _., __ ,

I

"i - .... ..c.... - - -

1

{

!

I

---~ - -- ~} --

.t - - -i ---.

- - -- - -. -~

I
- - ---j--- ---+-~-~'"'!-.....::------

- --

- :

I

J____ _ _ _-_ _

I

--,l

! ---~--
i

-Maximum Cracking --o- Bottom Up Reliability --Maximum Cracking Lirnit

10

0 l"'"iiii I

Ii""U!!

iiil"bll

i

"tiiii'liii""' \

;

iii!

"""" '

I

0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age {month)

Rural Minor-2-6-12-good-actual.dgp 10/14/2008 12:20 PM

0.80

.

Permanent Deformation: Rutting

1 of 1

0.70

-- ---~ ---- ..~-..-r-- . -- - --:

AC Rutting Design Value = 0.5

Total Rutting Design Limit= 0.75

0.60 +

l

-

0.50
-s:::
.s:::
-cccu. 0.40
C)
s:::
E
::I
0::: 0.30

. I I

j

j

;

-

j
---~--~

------

-

-,~--

-

-----

I
~,

.

-



--i

-----

.. _ ....._ ;

1

.

l
1

- ---__,.:..- ----+ --- -

.

-

' 90% Reliability

- 56%-R:eflability

~ i !

- --+I - -

- i-- - - -

~a,um:c:r1I;p--

j

___ ~
1 '
.__J __ _ _ __

r-i
. I



-

~~-- -rI

-~ --



--;l ---. I

-~:

-,

. .. subgrade

~ I

0.00 1

t

0

24

-;
I
48

-r u__ _

HMA
Aggregate Base

I

I

I

72

96

120

144

168

192

216

240

264

Pavement Age (month)

lnput Summary: Project Rural4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:07PM

Project: Rural 4 lane-2-5-12-Poordefault.dgp

General Information
Design Life Base/Subgrade construction: Pavement construction: Traffic open: Type of design

20 years May, 2008 July, 2008 July, 2008 Flexible

Description: Rural Primary Arterial 4 lane- Poor soil-Default

Analysis Parameters

1 of 10

Performance Criteria
lnitiaiiRI (in/mi) TerminaiiRI (in/mi) AC Surface Down Cracking (Long. Cracking) (ftlmile): AC Bottom Up Cracking (Alligator Cracking)(%): AC Thermal Fracture (Transverse Cracking) (ft!mi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in): Permanent Deformation (Total Pavement) (in): Reflective cracking (%):

Limit Reliability

63

172

90

2000

90

25

90

1000

90

25

90

0.5

90

0.75

90

100

Location: Project ID: Section ID:

Rural 4 lane - poor soil

Date:

6/9/2008

Station/milepost format: Station/milepost begin: Station/milepost end: Traffic direction:

North bound

Default Input Level
Default input level

Level 3, Default and historical agency values.

Traffic
Initial two-way AADTT: Number of lanes in design direction: Percent of trucks in design direction (%): Percent of trucks in design lane(%): Operational speed (mph):

1800 2
50 85 55

Traffic --Volume Adjustment Factors

Monthly Adjustment Factors

(Level 3, Default MAF)

Vehi cl~ Class

Month January

Class 4 Cfass5 Class 6 . Class 7 Class 8 Class 9 Class 10. Class n~ c1ass12 Class13

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

February March

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Input Summary: Project Rural 4 lane-2-5-12-Poor-default.dgp 10/1 4/2008 4:07 PM

April May June July August September October November December

i .OO
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i .UU
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1. 00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i .00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i.OU 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i .ou
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

; .ou
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 of 10

i. OO i .uo

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Vehicle Class Distribution

(Level 3, Default Distribution)

AADTT distribution by vehicle class

Class 4

1.8%

Class 5

24 .6 %

Class 6

7.6%

Class 7

0.5%

Class 8

5.0%

Class 9

"31.3%

Class 10

9.8%

Class 11

0.8%

Class 12

3.3%

Class 13

15.3%

Hourly truck traffic distribution
b>Y pen.od beg.mnm. g:

Midnight

2.3% Noon

5.9%

1:00am

2.3% 1:00pm

5.9%

2:00am

2.3% 2:00 pro

5.9%

3:00am

2.3% 3:00pm

5.9%

4:00am

2.3% 4:00pm

4.6%

5:00am

2.3% 5:00pm

4.6%

6:00am

5.0% 6:00 prii"

4:6%

7:00am

5.0% 7 :00 phl

4.6%

8:00am

5.0% 8:00pm

3.1%

9:00am

5.0% 9:00pm

3.1%

1o:oo am

5.9% 10:00 pm

3.1%

11:00 am

5.9% 11 :00 pm

3.1%

Traffic Growth Factor

Vehicle Class Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

Growth Rate 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth Function Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound

Traffic -- Axie Load Distribution Factors
Level3: Default

Traffic -- General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

10

Design lane width (ft):

12

Number of Axles per Truck

Veh icle Class Class 4

Single Tandem Tridem

Axl e

Axle

Axl e

1.62

0.39

0.00

Qu ad . Axle
0.00

Input Summary: Project Rural4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:07 PM

3 of 10

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.00

0.00

0.00

0.00

1.02

0.99

0.00

0.00

1.00

0.26

0.83

0.00

2.38

0.67

0.00

0.00

1.13

1.93

0.00

0.00

1.19

1.09

0.89

0.00

4.29

0.26

0.06

0.00

3.52

1. 14

0.06

0.00

2.15

2.13

0.35

0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions,ft):

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi) :

120

Average Axle Spacing Tandem axle(psi): Tridem axle(psi): Quad axle(psi):

51 .6 49.2 49 .2

Climate
icm file:
Latitude (degrees.minutes) Longitude (degrees.minutes) Elevation (ft) Depth of water table (ft)

C:\DG2002\Projects\GDOT M-E Design\Atlanta Airport.icm 33.38 -84.26 974 50

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-37A viscosity based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ) :
Volumetric Properties as BUilt Effective binder content(%): Air voids(%): Total unit weight (pcf):
Poisson's ratio:

Asphalt concrete 1.5
70
10.9
6
145.1 0.35 (user entered)

Input Summary: Project Rural 4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:07PM

Thermal Properties

Thermal conductivity asphalt {BTU/hr-ft-Fo) :

0.67

Heat capacity asphalt (BTU/Ib-Fo):

0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 16

Cumulative % Retained #4 sieve:

36

% Passing #200 sieve:

6

Asphalt Binder Option: A VTS:

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

gh temp.

Thermal Cracking Properties Average Tensile Strength at 14F: iviixture VMA (%) Aggreagate coeff. thermal contraction (in./in.) Mix coeff. thermal contraction (in./in./F):

Low

Mid.

High

Load Temp. Temp. Temp.

Time -4F

14F

32F

(sec) (1/psi) (1/psi) (1/psi)

1 2.7E-07 4.26E-07 5.74E-07

2 2.96E-07 4.96E-07 7.31E-07

5 3.33E-07 6.05E-07 1.01 E-06

10 3.65E-07 7.04E-07 1.28E-06

20 3.99E-07 8.19E-07 1.63E-06

50 4.5E-07 1E-06 2.25E-06

100 4.92E-07 1.16E-06 2.86E-06

393.04 16.9 0.000005 0.000013

Layer 2 --Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ) :
Volumetric Properties as Built Effective binder content(%):

Asphalt concrete
2
70 10.3

4 of 10

Input Summary: Project Rural4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:07PM

Air voids (%): Total unit weight (pcf) :

6 146.4

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ): Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 32

Cumulative % Retained #4 sieve:

49

% Passing #200 sieve:

5

Asphalt Binder Option: A VTS:

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

High temp.

Layer 3 --Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete 5

General Properties

General

Reference temperature (F0 ) :

70

Volumetric Properties as Built Effective binder content(%}: Air voids(%): Total unit weight (pcf):

8.3 6 148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ): Heat capacity asphalt (BTU/Ib-Fo):

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 21

Cumulative % Retained 3/8 inch sieve: 39

Cumulative % Retained #4 sieve:

45

% Passing #200 sieve:

5

5 of 10

Input Summary: Project Rural4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:07PM

Asphalt Binder Option: A VTS:
High temp.
oc
46 52 58 64 70 76 82

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

Low temperature, oc

-10

''4';~

.. ...,,
-:.

~ I

.. . -16

-22

-28

f"'; ,. (c.:. l.l, .\ ~~.~'.-':"''~:.:.=t'~\~1~,_;, l ~i"~J1~.}~\' :tt,--\:".L.~.~R~;

-34

-40

-46

~"' -~-"~'l~...A
l.ii\fi' !~~~
'1P!J~~t&l 1.:;!;'!(J,.~.~':l.i-"1.,ll1:J1',
;<lt~ ~ ~.-- ~:.;.;'~''-'!t:'~"'~'~!

Layer 4 -- Crushed stone
Unbound Material: Thickness(in):

Crushed stone 12

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure, Ko: Modulus (input) (psi):

Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 30000

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

1 6
No 8.7 20 44.7 0.1035 0.425 1.306 10.82 46.19

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16

Percent Passh'lg
8.7 12.9 20

6 of 10

Input Summary: Project Rural4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:07 PM

#10 #8 #4 3/8" 1/2" 3/4" 1" 1 1/2" 2" 2 1/2" 3" 3 1/2" 4"

33.8
44.7 57.2 63.1 72.7 78.8 85.8 91.6
97.6 97.6

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ftlhr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a b
c
Hr.

Value 7.2555 1.3328 0.82422 117.4

127.2 (derived) 2.70 (derived) 0.05054 (derived) 7.4 (derived) 61.2 (calculated)
Default values

Layer 5 -- A-7-6
Unbound Material: Thickness(in):
Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):
ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

A-7-6 Semi-infinite
Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 11500
30 51 No 79.1 88.8 94.9 0.0002309 0.0005333 0.001231 0.01516 0.6616

7 of 10

Input Summary: Project Rural4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:07 PM

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10 #8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 2 1/2" 3" 3 1/2" 4"

Percent Passing
79.1 84.9
88.8
93 94.9 96.9 97.5 98.3 98.8 99.3 99.6
99.9 99.9

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fUhr): Optimum gravimetric water content (%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters
a
b c Hr.

Value 136.42 0.51828 0.032384
500

97.7 (derived) 2.70 (derived) 8.946e-006 (derived) 22.2 (derived) 82.7 (calculated)
Default values

Distress Model Calibration Settings - Flexible

Level3: NCHRP 1-37A coefficients (nationally

AC Fatigue

calibrated values)

k1

0.007566

k2

3.9492

k3

1.281

AC Rutting k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) -3.35412

8 of 10

Input Summary: Project Rural 4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:07 PM

k2

1.5606

k3

0.4791

Standard Deviation Total Rutting (RUT):

0.24*POWER(RUT,0.8026)+0.001

Thermal Fracture k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std. Dev. (THERMAL):

0.1468 *THERMAL+ 65.027

CSM Fatigue k1 k2
Subgrade Rutting Granular:
k1 Fine-grain:
k1
AC Cracking AC Top Down Cracking
C1 (top) C2 (top) C3 (top) C4 (top)
Standard Deviation (TOP)

Level 3: NCH RP 1-37A coefficients (nationally calibrated values) 1 1
Level3: NCHR.P 1-37A coefficients (nationally calibrated values)
2.03
1.35
7
3.5 0 1000
200 + 2300/(1 +exp(1.072-2.1654*1og(TOP+0.0001 )))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom)
Standard Deviation (TOP)

1 1 0
6000
1.13+13/(1 +exp(7.57-15.5*1og(BOTTOM+0.0001)))

CSM Cracking
C1 (CSM) C2 (CSM) C3 (CSM) C4 (CSM)
Standard Deviation (CSM)

1 1 0
1000
CTB*1

IRI

9 of 10

Input Summary: Project Rural4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:07PM

IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40 0.4 0.008 0.015

IRI HMAIPCC Pavements C1(HMNPCC) C2(HMNPCC) C3(HMNPCC) C4(HMNPCC)

40.8 0.575 0.0014 0.00825

10 of 10

Rural4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:08PM

1 of 1

Surface Down Cracking - Longitudinal

3000~----~-----,,-----~----~-----,~----.-----~------~----~----~-----r

2700 ~-

-l- ---1-- .. -t---. --r- ..

-----t-----::----:-- 2400

.

i \

.
I

I

.

I

j ---- ~-- ---

I

;

I

I

2100

1

I ~

----r- ----- ~-----

ri' -----T

....,_""--T----

..... -

::-

= ( E

I

-~ 1aoo - --rI-----T

:;:

i

.

-----Iwo~-- -t. .... - ..--...... ------ . -~--- -t-

i

1

I

- --..~ - '

~o~ 1500
.a 1200
g>

I

.

I

I

! - - -- .. - ~,. ----;-I-

- ________ ,_.. - - - - - . - - - -

I

I I

I I

li ..

--r----- ; ------ j-

'I
- .-- 1

0

...J

1 1-------;------ goo

I

I _j_I~

I!I

600 - - ----j

l . I -

I

t ___ -- 1-



- - -- _ __;___-! --- -- ....__

; 1
~:1 ---!-i . I

I
i
~I--- ~-

I I
-~i-

~--

I _.,.J

----- ----~

'

?" rS

I

--'--

I ~ I

I !;

' i

I ' - ---~- ------ - -l- -- ---- -;------ -------- , -- -

0 ~

I

'

t



:

I

I

!

;

i

:

.
i ,

I

:

liihh!ll llllllllllhil!lllllllli llhlllllllllllllllllii:

llllllhjllj

0

24

48

72

96

120

144

168

192

216

240

Pavement Age (month)

-surface
= __,_Depth 0.5"
-Surface at Reliability --Design Limit
I
264

Rural4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:08PM

1 of 1

Bottom Up Cracking -Alligator

100

9o -1- - - +- - -r.I - --

i

lII

-------

,__
1

. ----i

I

8o

l
-t------1----i- --.

l---- --r---.---~--.-

--

" ----

.,------ -----~--

.

70
-
i?fl. 60 .:.-:: 0~ 50
o
=~0 40 -
<(
30 -1

IrI -----11I ----

I
~-tt -

-

..

~-

I
I;--

.

-----

'
~l" .............


--.

-~ ..... .... -

:
:,~
! .
: '
' I
-I

.-- " I '



!

i

i

I
I ~

I
I
t

--~I ---r,-I ---;-r~

_j

- - . ! - - _ .......~......- _,......._! ~~ . - ----- .....: - ..............

I I -~1

l
---' f--

'
:
__j____ --

~
-- ~i - -----

'

'

'

-- ----- - - ..........:.

;

i

r

l

.

i
!

l I

I
I

1 -~-~ ~

rI------- I

;

!
-~--:-------

i
----.---- - - -----

:I---- --;.--

... --

. -

.

I

!

I

I

i

l

;

~----tj -- -'1 --~----;j--- -------,-- .. --- --:-- - -- ---

!

.

I

20 'I

-j
.

i .

: ~-~:-I

I

~--- - -------- ..----'-"-

-~-L

10

o 1

;

_j

I

I

\""""

~

,"iili" ~ ~iii

____ _..:.__

-"-._ -----'-- ---\-. ---



11!11!111111 II!@ iil\!l'l.ii!@iil jjjj

;

il@ii!ii:

I

-Maximum Cracking

J

--o- Bottom Up Reliability

--Maximum Cracking Limit

0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Rural 4 lane-2-5-12-Poor-default.dgp 10/14/2008 4:10 PM

Permanent Deformation: Rutting
0.80

0.70 _, _ 0.60 ~

AC Rutting Design Value = 0.5 Total Rutting Design Limit= 0.75

__ ,_... .,... .'~-
I
_ 1_

1 of 1
9~~ ~'eli~bllity 50% Reliability

- 0.50 + - - -----"-
r::::
..r.c::.:.:.
cQ) 0.40
C)
=r::::
:::J
0:: 0.30

! _ _,__,., _~,

I

'

---~-

0.10 -tr'-- - - - -l-!J--rtl!-:_--+'------+-

----;- ----

- . -

- 4 - ...!....--~--- - - ---- ----- -- ..

"" ~
---

subgrape
. ~Ht1A
-~ggre.gJ~ Bas~

0.00 0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Input Summary: Project Rural 4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

Project: Rural 4 lane-2-13-12-pooractual.dgp

General Information
Design Life Base/Subgrade construction: Pavement construction: Traffic open: Type of design

20 years May, 2008 July, 2008 July, 2008 Flexible

Description : Rural Principal 4-lane-poor soil-actual data

Analysis Parameters

1 of 16

Performance Criteria
lnitiaiiRI (in/mi) TerminaiiRI (in/mi) AC Surface Down Cracking (Long. Cracking) (fUmile): AC Bottom Up Cracking (Alligator Cracking)(%): AC Thermal Fracture (Transverse Cracking) (ft/mi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in): Permanent Deformation (Total Pavement) (in): Reflective cracking (%):

Limit Reliability

63

172

90

2000

90

25

90

1000

90

25

90

0.5

90

0.75

90

100

Location: Project ID: Section ID:

Rural Principal 4-lane-poor soil-actual data

Date:

6/9/2008

Station/milepost format: Station/milepost begin: Station/milepost end: Traffic direction:

North bound

Default Input Level
Default input level

Level 3, Default and historical agency values.

Traffic
Initial t:wo-way AADTI: Number of lanes in design direction: Percent of trucks in design direction (%): Percent of trucks in design lane(%): Operational speed (mph):

1800 2
50 85 55

Traffic-- Volume Adjustment Factors

Monthly Adjustment Factors

(Level 3, Default MAF)

Month

~ebicle Clat;s
Class4 Ciass5 Class6 Class 7 Class 8 cJass 9

January

1.00

1.00

1.00

1.00

1.00

1.00

February

1.00

1.00

1.00

1.00

1.00

1.00

March

1.00

1.00

1.00

1.00

1.00

1.00

Cia$~ 10 class '11' Cl~$s12 Class 13

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Input Summary: Project Rural4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

April May June July August September October November December

AI . U"U"
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AI . U"U"
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 of 16

i.OO

i.uo

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Vehicle Class Distribution

(Level 1, Site Specific Distribution )

AADTT distribution by vehicle class

Class 4

0.0%

Class 5

14.9%

Class 6

12.6%

Class 7

0.2%

Class 8

6.2%

Class 9

62.3%

Class 10

1.8%

Class 11

0. 7%

Class 12

0.8%

Class 13

0.5%

Hourly truck traffic distribution b)Y pen.odbeg.mnm. g :

Midnight

2.3% Noon

5.9%

1:00am

2.3% 1;00 pm

5.9%

2:00am

2.3% 2:00pm

5.9%

3:00am

2.3% 3:00pm

5.9%

4:00am

2.3% 4:00 pril

4.6%

5:00am
s:ooam
7:00am

2.3% 5:00 pril .
5.0% 6:00 Pni
5.0% ?:00 pm

4 .6% 4.6% 4 .6%

8:.00 arri

5.0% 8:oopm

3.1%

9:00am

5.0% 9:0Q . pm

3.1%

10:00 am
11 :oo am

5.9% 10:00.pm 5.9% 1t:OOpm

3.1% 3.1%

Traffic Growth Factor

Vehicle Class Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

Growth Rate 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth Functiqn Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound

Traffic --Axle Load Distribution Factors
Level 3: Default

Traffic -- General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

10

Design lane width (ft):

12

Number of Axles per Truck

Vehicle
Cl~ss
Class 4

Sing I ~ Tandem Tridem ' Quad

Axle

:A~Ie

Ax'e

Axle

2.50

0.00

0.00

0.00

Input Summary: Project Rural 4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

3 of 16

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.04

0.00

0.00

0.00

1.00

1.00

0.00

0.00

1.00

1.00

0.00

1.00

2.47

0.53

0.00

0.00

1.08

1.93

0.00

0.00

1.00

1.33

0.44

0.22

4.50

0.00

0.00

0.00

4.25

1.00

0.00

0.00

2.00

4.00

0.00

0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions, ft) :

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi) :

120

Average Axle Spacing

Tandem axle(psi):

51.6

Tridem axle(psi):

49.2

Quad axle(psi):

49.2

Climate
icm file:
Latitude (degrees.minutes) Longitude (degrees.minutes) Elevation (ft) Depth of water table (ft)

C:\DG2002\Projects\GDOT M-E Design\Atlanta Airport.icm 33.38 -84.26 974 50

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-37A viscosity based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ):
Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):
Poisson's ratio:

Asphalt concrete 1.5
70
10.9 6 145.1 0.35 (user entered)

Input Summary: Project Rural 4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-Fa): Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
14 40 70 100 130

0.1 855234 566220 155484 42360 10000

0.5
866483 741295 258053 76594 18079

Mixture E* (psi)

1

5

880544 993030

821334 1009408

309866 457657

103212 178704

25732 54139

10 1133637 1092157 532850 221330 69651

25
1555460 1219071 677287 297097
91155

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0 0

Test

Temp.
OF

Softening point (P)

120

Absolute viscosity (P)

140

Kinematic viscosity (CS)

275

Specific gravity

77

.
Thermal Crackmg Properttes

Average Tensile Strength at 14F:

Mixture VMA (%)

Aggreagate coeff. thermal contraction (in./in.)

Mix coeff. thermal contraction (in./in./F):

Binder Property
13000 2200 450 1.03
474.77 16.9 0.000005 0.000013

Load
Time
(s~cj _-
1 2 5 10 20 50 100

Low Temp.
-4oF
(1/p~i)
3.34E-07 3.76E-07
4.4E-07 4.95E-07 5.57E-07 6.51E-07 7.32E-07

Mid. Temp.
1'4oF
(11psl) 5.04E-07 6.04E-07 7.68E-07 9.21E-07 1.11E-06 1.41E-06 1.69E-06

High
Temp.
32~F
(1/psi} 6.74E-07 9.15E-07 f.37E-06 1.86E-06 2.53E-06 3.78E-06 5.14E-06

Layer 2 --Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ):

Asphalt concrete
2
70

4 of 16

Input Summary: Project Rural 4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

Volumetric Properties as Built Effective binder content(%): Air voids (%): Total unit weight (pcf):

10.3 6 146.4

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-Fo):

0.67 0.23

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
14 40 70 100 130

0.1 948063 631790 199557 42729 12326

0.5 958932 805188 316779 80331 23153

Mixture E* (psi)

1

5

972518 1081207

884998 1078331

376079 538752

107691 193954

33357 69403

10 1217068 1161103 616747 238578
91706

25 1624650 1275247 727400 307156 127327

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0 0

Test Softening point (P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp.
.oF
120 140 275 77

Binder Property
13000 2200 450 1.03

Layer 3 -- Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete 13

General Properties

General

Reference temperature (F0 ):

70

Volumetric Properties as Built Effective binder content(%): Air voids (%): Total unit weight (pcf):

8.3 6 148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ): Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

5 of 16

Input Summary: Project Rural41ane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
14 40 70 100 130

0.1 840879 573018 200017 46395 10000

0.5 851932 753399 316664 80273 15326

Mixture E* (psi)

1

5

865748 976279

833300 1031157

374644 539280

106866 195998

22569 46188

10 1114443 1111954 622684 247581
59240

25
1528934 1272170 769096 316573
71922

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0 0

T;est Softening point (P) Absolute viscosity_(P} Kinematic viscosity (CS) Specific gravity

Temp.
OF
120 140 275 77

Binder Property
13000 2200 450 1.03

Layer 4 -- Crushed stone
Unbound Material: Thickness(in):

Crushed stone
12

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):

Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 13304

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

1 6
No 8.7 16.7 48.7 0.1152 0.5715 1.417 9.111 26.11

Sieve. 0.001mm 0.002mm 0.020mm

... Percent Passin_a

6 of 16

Input Summary: Project Rural4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

#200

8.7

#100

#80

#60

#50

12.9

#40

#30

#20

#16

#10

33.8

#8

#4

3/8"

1/2"

3/4"

72.7

1"

88.8

11/2"

100

2"

100

2 1/2"

3"

3 1/2"

100

4"

100

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fUhr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a b
c
Hr.

Value 3.7678 1.7964 0.74507 117.4

127.9 (derived) 2.70 (derived) 0.02801 (derived) 7.0 (derived) 59.9 (calculated)
Default values

Layer 5 -- A-7-6
Unbound Material: Thickness(in):
Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):
ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL)

A-7-6 Semi-infinite
Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 3048
30 51

7 of 16

Input Summary: Project Rural4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

Compacted Layer Passing #200 sieve(%) : Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

No
79.1 88 .8 94 .9 0.0002309 0.0005333 0.001231 0.01516 0.6616

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10 #8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 2 1/2"
3"
31/2" 4"

Percent Passing
79.1 84.9
88.8
93 94 .9 96 .9 97 .5 98.3 98.8 99.3 99.6
99.9 99.9

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ftlhr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

.. Parameter$
a
b
c
Hr.

v~lue
136.42 0.51828 0.032384
500

97.7 (derived) 2.70 (derived) 8.946e-006 (derived) 22.2 (derived) 82.7 (calculated)
Default values

Distress Model Calibration Settings - Flexible

8 of 16

Input Summary: Project Rural4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

AC Fatigue
k1
k2 k3

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 0.007566 3.9492 1.281

AC Rutting
k1
k2 k3

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) -3.35412 1.5606 0.4791

Standard Deviation Total Rutting (RUT):

0.24*POWER(RUT,0.8026)+0.001

Thermal Fracture
k1

Level3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std. Dev. (THERMAL):

0.1468 *THERMAL+ 65.027

CSM Fatigue
k1
k2
Subgrade Rutting Granular:
k1
Fine-grain:
k1
AC Cracking AC Top Down Cracking C1 (top) C2 (top) C3 (top) C4 (top)
Standard Deviation (TOP)

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1 1
Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
2.03
1.35
7 3.5 0 1000
200 + 2300/(1+exp(1.072-2.1654*log(TOP+0.0001 )))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom)
Standard Deviation (TOP)

1 1 0 6000
1.13+13/(1+exp(7.57-15.5*1og(BOTIOM+0.0001)))

CSM Cracking

9 of 16

Input Summary: Project Rural41ane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

C1 (CSM) C2 (CSM) C3 (CSM) C4 (CSM)

i
1 0 1000

Standard Deviation (CSM) CTB*1

IRI
IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40 0.4 0.008 0.015

IRI HMAIPCC Pavements C1 (HMAIPCC) C2(HMAIPCC) C3(HMAIPCC) C4(HMAIPCC)

40.8 0.575 0.0014 0.00825

10 of 16

Rural4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:24 PM

1 of 1

Surface Down Cracking - Longitudinal

3000

p

I

I

I

0

2700 +

:
I

. :
I

t

I

I

I

- 2400 --[------

t





.

-

- - - ~- ~ ~ .... 4 .......: ... . ..._.._~ . . . . ..-r......-.....-~- -~-- ~-..... -- ,_,., -...:\.-_ .. . - . - . - . ...... .... . .

;
-- --I-t-

2100 ~--- - - ----

=:::-
E
j 1800
~ g

I I
l :

o._ 1500

I

=cu
"~0 1200

!

. t - - - -- __ !______ _

t

,._ ~

~

-, ---

t 1

---i:i------1Il - ---i:. -----.-I~---- --i -

-

! i
:

-----r - --- !~

! .

I l
-~!

---=t ------ ---:!.'-----

1

j

I

III

I -
I

.:. _ _ _,_____ ___ _ , _ _ _

0
..J
900

I ;
'
1

l ;
I

I
I,

.

I

I

I
.

I .

1 ~---~--;-----;-~

I I 600

,I -

-

-

-

-

:1:--

-

-

+

I
!l -~-;-I -

!

i 300

I

j

.!: ; ;

i 1

I

:

,

---I r---1! ----I,---~--:.. ....--~-

j

i

1

I

i

. \

I! ; ;; ; \ ;; ;;; ;.

;; - ,

I

0 -1

I iii!

I

I

\ '""'" 1

"'I



I

0

24

48

72

96

120

144

168

192

216

Pavement Age (month)

- +.- -
;
240

-surface -Depth= 0.5" -Surface at Reliability -Design Limit
I 264

Rural 4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:25 PM

1 of 1

Bottom Up Cracking -Alligator

100

I

I '

I

I

!

.

I

90

I

;



I

: I l ,--- -~ ------i--~----'----

I

I

;

I
I I

I I

I ,

~~-"'-j

!

I

l

:

;

i

;

i

l

8Q

I
j

:
I

I i I ~ -- - - - - :- - .;. - - - -1I

- - - ..~

----:-----



''"""'<r-o''*"'~'"''" ' , .. ,.,._r """~,., ._.,.

--

70

~-

:
o-I. -

---!.-.I0 ------~!I

--.j'!-. -

I
~I!-'""

"

-

;

~-
: l -

-

-

-- ..,I--

'-;/!.

i I

0
\

I !

J 1

II l

- 60
C')
~.~5 50 0
~.s= 40
<(
30 I

- 00

:

I

; ~

I '

i

,_1!

: J

i

I I
I I

I
l 0

---l-

I
I
!
I 1
l l I

I l

j _-Ir--o- ! .-~ !

-!-- _____j



I !
~ -

' (
I I i

I -'--- ---

I

I

I

.

LI ____.___ ,.

.":' ... ---
-- - o-- o--- ~

0
I

1

I

!

l

I

j

I

,----1I

I I

I

I

:

20 --

. ! 1 ....1-----,.-~--:-:t

--r-
.

I

:

__.....~,._r --~vl



I
I
I
10 + - ----..+---

~----;

.. - ----- ---- -~ ~

I _1_,__ 0

0 l"'"hh

ww,'uw

I

11

:

I

I !iii! @hi hi I ,

;

;

0

24

48

72

96

120

144

168

192

216

240

Pavement Age (month)

-Maximum Cracking --o- Bottom Up Reliability --Maximum Cracking Limit
I
264

Rural41ane-2-13-12-poor-actual.dgp 10/14/2008 12:27 PM

Permanent Deformation: Rutting

0.80

1

I

;

I

I

I

0.70

AC Rutting Design Value = 0.5

,_ ---__ -~-l!!-I

_

1 .
jI__..---..-

-



-i c

-90%

Relia:bility

- - -

1



Total Rutting Design Limit= 0.75

OBO +

:

L

0.50
-c::
-.c::
-c.
cQ)
0.40 -~~
C)
c::
E
::I
0::: 0.30

-~~ 0.20

: -

I

I

0.10

L

~ :--- - -

... ----'-l- -- -- .........
!

.-4-

--~ . - -- - - -

1

;

f

-- - ~

----21

-----~-j

- -"' -

...

' '

- - - -~ -'I

I

i
!

'---- j ----:...-.. I

_ - --.__. _, _ ,, .... ;----- --~-

.!...-.

I

I

i

r L

~- -- -_j
!

I I
~I -----..:j-

- , . - - - -.

0.00 0

;

l

l

.

24

48

72

96

120

144

168

192

Pavement Age (month)

1 of 1

5;o% Reliability Subgrade

HMA

Aggregate Base

216

240

264

Rural4 lane-2-13-12-poor-actual.dgp 10/14/2008 12:27 PM

1 of 'I

Permanent Deformation: Rutting
0.80

0.70

AC Rutting Design Value = 0.5 Total Rutting Design Limit= 0.75

I

i

--

-1~----
I

-

---L .

I

- - - - 90% Reliability

--: - -~-- -- --~ --~--- ;.--

"

ar 0.60 +- --- ,;-- --!- ------~ ~Lml""

<e:

! -- ~ - -- : -------- --- --- ------~

5:0% Reliability

- - ~~-

.~ -

0.50
-c
-.c
-Q.
cCl)
0.40
C)
c
E
::J
0:::: 0.30
0.20

---~~~

i

-..... ...4-- _. ... i _._,..,.~---

.
.--~

Subgrade

----!- -

- - - ~~-. - - - - - -

... 1

--r----l- - ---- ;

;

I

I

'

--~--:I

- - ~---- --- ~---~

. +- l ' I

i

I

!

I

I

------r~-----



i

I

'

-

-

----j--

I
--- -~-

.

I

HMA

0.10
0.00 0

I

1 - - -- -

-- - --..---i --.l---

iii!

$11'1 )

liOiltili1!

I

I

lllf!!IF!'t

I

Aggregate Base

:

'

'

'

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Input Summary: Project Rural4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

Project: Rural 4 lane-2-6-12-gooddefault.dgp

General Information
Design Life Base/Subgrade construction: Pavement construction: Traffic open: Type of design

20 years May, 2008 July, 2008 July, 2008 Flexible

Description: Rural Principal 4 lane- good soil-default

Analysis Parameters

1 of 10

Performance Criteria
lnitiaiiRI (in/mi) TerminaiiRI (in/mi) AC Surface Down Cracking (Long. Cracking) (ftlmile): AC Bottom Up Cracking (Alligator Cracking)(%): AC Thermal Fracture (Transverse Cracking) (ftlmi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in): Permanent Deformation (Total Pavement) (in): Reflective cracking (%):

Limit Reliability

63

172

90

2000

90

25

90

1000

90

25

90

0.5

90

0.75

90

100

Location: Project ID: Section ID:

Rural41ane

Date:

6/9/2008

Station/milepost format: Station/milepost begin: Station/milepost end: Traffic direction:

North bound

Default Input Level
Default input level

Level 3, Default and historical agency values.

Traffic
Initial two-way AADTT: Number of lanes in design direction: Percent of trucks in design direction (%): Percent of trucks in design lane(%): Operational speed (mph):

1800
2
50 85 55

Traffic --Volume Adjustment Factors

Monthly Adjustment Factors

(Level3, Default MAF)

Month

VEthich~ Cla~s
Class 4 Class .5 Class6 Class 7 Class a Class 9 eras~ 10 chts.s 1:1 C.lass f2: Class. 1'3

Januaryi

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

February

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

March

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Input Summary: Project Rural 4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

April May June July August September October November December

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00

i.oo

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i.uu
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i.Ou
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 of 10

i.UO

i.UU

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Vehicle Class Distribution

(Level 3, Default Distribution)

AADTT distribution by vehicle class

Class 4

1.8%

Class 5

24.6%

Class 6

7.6%

Class 7

0.5%

Class 8

5.0%

Class 9

31.3%

Class 10

9.8%

Class 11

0.8%

Class 12

3.3%

Class 13

15.3%

Hourly truck traffic distribution
b>Y pen.odbegm. nm. g:

Midnight

2.3% Nobh

5.9%

1:ooam

2.3% 1:00pm

5.9%

2:ooam

2.3% 2:00 -pni

5.9%

3:00 aill

2.3% 3:oopm

5.9%

4:00am

2.3% 4:00 pr'n

4.6%

'5:00am

2.3% 5:0Q pm.

4.6%

6:ooam

5.0% 6:00phi

4.6%

7:00 'am

5.0% ?:onpm

4.6%

8:00am

5.0% 8:00pm

3.1%

9:00am

5.0% 9:00pm

3.1%

10:00 am

5.9% 1.0:00 pm

3.1%

11:00 am

5.9% lt:OOpm

3.1%

Traffic Growth Factor

Vehicle Class Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

Growth Rate 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth Function Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound

Traffic -- Axie Load Distribution Factors
Level3: Default

Traffic -- General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

10

Design lane width (ft):

12

Number of Axles per Truck

ve-hicle ;t Class
Class 4

Single . 'Fandem : Axle ' Axle.

1.62

0.39

Tri_tJem~
Axle 0.00

Quad Axle
0.00

Input Summary: Project Rural4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

3 of 10

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.00

0.00

0.00

0.00

1.02

0.99

0.00

0.00

1.00

0.26

0.83

0.00

2.38

0.67

0.00

0.00

1.13

1.93

0.00

0.00

1.19

1.09

0.89

0.00

4.29

0.26

0.06

0.00

3.52

1.14

0.06

0.00

2.15

2.13

0.35

0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions, ft):

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi) :

120

Average Axle Spacing

Tandem axle(psi):

51.6

Tridem axle(psi):

49.2

Quad axle(psi):

49.2

Climate
icm file:
Latitude (degrees.minutes) Longitude (degrees.minutes) Elevation (ft) Depth of water table (ft)

C:\DG2002\Projects\GDOT M-E Design\Atlanta Airport.icm 33.38 -84.26 974 50

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-37A viscosity based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ) :
Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):
Poisson's ratio:

Asphalt concrete 1.5
70
10.9
6
145.1 0.35 (user entered)

Input Summary: Project Rural4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 16

Cumulative % Retained #4 sieve:

36

% Passing #200 sieve:

6

Asphalt Binder Option:
A
VTS:

Superpave binder grading 10. 9800 (correlated) -3.6800 (correlated)

Thermal Cracking Properties Average Tensile Strength at 14F: Mixture VMA (%) Aggreagate coeff. thermal contraction (in./in.) Mix coeff. thermal contraction (in./in./F):

Load Time _.(sec)
1 2 5 10 20 50 100

Low

Mid.

Temp. Temp.

-4oF

1'4F

(1/psj) . (1/p~j)

2.7E-07 4.26E-07

2.96E-07 4.96E-07

3.33E-07 6.05E-07

3.65E-07 7.04E-07

3.99E-07 8.19E-07

4.5E-07 1E-06

4.92E-07 1.16E-06

High Temp.
32F (1/psi) 5.74E-07 7.31 E-07 1.01E-06 1.28E-06 1.63E-06 2.25E-06 2.86E-06

393.04 16.9 0.000005 0.000013

Layer 2 -- Asphalt concrete
Material type: Layer thickness (in):

General Properties

General

Reference

temperature

(F 0 ):

Volumetric Properties as Built Effective binder content(%}:

Asphalt concrete
2
70 10.3

4 of 10

Input Summary: Project Rural4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

Air voids (o/~) : Total unit weight (pcf) :

6
146.4

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 32

Cumulative % Retained #4 sieve:

49

% Passing #200 sieve:

5

Asphalt Binder Option: A VTS:

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

High temp.

Layer 3 --Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete
6

General Properties

General

Reference temperature (F0 ):

70

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

8.3
6
148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ): Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 21

Cumulative % Retained 3/8 inch sieve: 39

Cumulative % Retained #4 sieve:

45

% Passing #200 sieve:

5

5 of 10

Input Summary: Project Rural4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

Asphalt Binder Option: A VTS:
High temp.

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

6 of 10

Layer 4 -- Crushed stone Unbound Material: Thickness(in):

Crushed stone 12

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):

Level 3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 30000

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve (%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

1 6
No 8.7 20 44.7 0.1035 0.425 1.306 10.82 46.19

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16

. PercentPassi.ng
8.7 12.9 20

Input Summary: Project Rural4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

#10 #8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 2 1/2" 3"
3 1/2" 4"

33 .8
44 .7 57.2 63 . 1 72.7 78.8 85.8 91.6
97.6 97 .6

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fUhr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a b
c
Hr.

Value 7.2555 1.3328 0.82422 117.4

127.2 (derived) 2. 70 (derived) 0.05054 (derived) 7.4 (derived) 61.2 (calculated)
Default values

Layer 5 -- A-2-4
Unbound Material: Thickness(in):
Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):
ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

A-2-4 Semi-infinite
Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 21500
2
14 No
22.4
67.2 87.2 0.001921 0.0369 0.1115 0.3476 7.383

7 of 10

Input Summary: Project Rural 4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10 #8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 21/2" 3" 3 1/2" 4"

Percent Passing
22.4 42 .3
67 .2
82.5 87.2 91.6 93.5 95.9 97.2 98.5 99
99.6 99.6

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fUhr): Optimum gravimetric water content (%): Calculated degree of saturation(%):

Soil water characteristic curve parameters:

Parameters .
a b
c
Hr.

vallu!.
9.5043 0.64386 3.0636
189.6

124.0 (derived) 2.70 (derived} 0.0005854 (derived) 9.0 (derived) 67.5 (calculated)
Default values

Distress Model Calibration Settings ~ Flexible

Level3: NCHRP 1-37A coefficients (nationally

AC Fatigue

calibrated values)

k1

0.007566

k2

3.9492

k3

1.281

AC Rutting
k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) -3.35412

8 of 10

Input Summary: Project Rural 4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

k2

1.5606

k3

0.4791

Standard Deviation Total Rutting (RUT):

0 .24*POWER(RUT,0.8026)+0 .001

Thermal Fracture k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std . Dev. (THERMAL):

0.1468 *THERMAL+ 65.027

CSM Fatigue k1 k2
Subgrade Rutting Granular: k1 Fine-grain: k1
AC Cracking AC Top Down Cracking C1 (top) C2 (top) C3 (top) C4 (top)
Standard Deviation (TOP)

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1 1
Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
2.03
1.35
7 3.5 0 1000
200 + 2300/(1+exp(1.072-2.1654*1og(TOP+0.0001)))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom)
Standard Deviation (TOP)

1 1 0 6000
1.13+13/(1 +exp(7.57-15.5*1og(BOTTOM+0.0001 )))

CSM Cracking C1 (CSM) C2 (CSM) C3 (CSM) C4 (CSM)
Standard Deviation (CSM)

1 1 0 1000
CTB*1

IRI

9 of 10

Input Summary: Project Rural4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40 0.4 0.008 0.015

IRI HMAIPCC Pavements C1(HMAIPCC) C2(HMAIPCC) C3(HMAIPCC) C4(HMAIPCC)

40.8 0.575 0.0014 0.00825

10 of 10

Rural 4 lane-2-6-12-good-default.dgp 10/14/2008 12:29 PM

1 of 1

Surface Down Cracking - Longitudinal

3000

'

'

'

.

2700 -1---------l.-

'

-+- - , ---- . !

I

--- - - -- ---

...... t---~

2400

:

I

)
I
--~- -

i
I l --- -;-~-,
I I

-- - -~---
!

I- , ----i

_,. ---~

!

ol -~~~

1

2100 :=-

- --!~-

-=E
C'l 1800

I

s:::::

+-

32

0n0s
ns

1500 '

s:::::

"0
~ 1200

I

I



I

----:~---r --

I I
.

. -, .;"~--

-- . ~-!- ---~i -

I - - -~-

I.r _ L_ _

~---L I.t

! l - ----

I I

I, -

--~I -----;- -~ --..---- .. .

I l '!-- - i - ---j _____ j

I



!

'I.- - - ; - -

' '

'~-- li -~

: i

C'l
s:::::
0 ...J
900
600 i
300
o ~

I
n
f

I

j

l

i

_j_

l

I

i

I

i

~---1l

--+----+~ l

l __ ,

!

j

----- - -- -i -- - ---- .
--, I ~---..-,..------ -- - ~----- - - - - - ---

I I' '''''''''"''''i'''

ihiiiii:

;;;;;;~ ;;n;;mmm;;m Iujilhi!hliliiilliiiiiii)iiiiiliiiill III II IiililIlliii!iiililllli!l!il!!i)iliiiiiii!i!lilljjjiii(

0

24

48

72

96

120

144

168

192

216

240

-surface
-o-Oepth =0.5"
-o- Surface at Reliability --Design Limit
I
264

Pavement Age (month)

Rural4 lane-2-6-12-good-default.dgp 10/14/2008 12:30 PM

1 of 1

Bottom Up Cracking - Aliigator

100

I

I

!

0

.-. ----[-- -.--______;;__j 90

~~___:,

_L
- j -

i

i

---,----,-----

- -~t

i

;

]

;

80

.1;-I--~' --

i

. --r . - l; -- ---I r~---:

--- -~I ----

'

- - - '!-~

(
I . I

I

:

i t

---i' _ _ 70 +--~-~' ---~~--~l~

J!..__

'



t

_ ,i I .I . l I t

I

1
I~

- -- - ..1f -' "'

'"'"'"~

f
-1.'--~

1
--..:-i.....~-

- - ~.~-' l

i

! ~
g'

6o

-~I ---l' -~--J~.-jj_

J.--~---~--. .L_.___;.___.___.:.___ ___ ____~ --~--

I

:

I

l

.

3~2 so

'
I

:

I
1

I I

I
.

J___ ;

~

j____ _____

j __ -~ --- _.__ .

=0..~s.. 40

'j
.

I
I
1

I III

I
l !

:

I

'
J

:
I
.

l ---i t----l~-----1-----------t----;i - - - - -i - - - - --

<
30

; I .

--lIr----1! i---tIl-

~l'

l
I

--- - ~- ----1-,---

!
.
----

.

-

:
.'-----

1

;

!

I

I

I

l

t

20 ,I

-I

I

I~---- I

1'

' . : ' ~--i-~i----

~10

1
I

I
:

I

I
I

: --iI-

I -il ---;I --

L-..1

1

!

l

I

l

i

I

I

0

0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

-Maximum Cracking -Bottom Up Reliability -Maximum Cracking Urnit

Rural 4 lane-2-6-12-good-default.dgp 10/14/2008 12:32 PM

1 of 1

Permanent Deformation: Rutting

0.80 0.70 ~0.60

I

AC Rutting Design Value = 0.5 Total Rutting Design Limit= 0.75

, ,_ j _ _ ______ ! -

l

l

- l!'

-. . .. ...... _ .. ,, ,__-",....._,., ,.,:.- ., ..-- _...,. ,~- ~..-----

-! ....- -

-

- 1' "

9Q% Reliability

- 0.50
s::::
-..s::::
a.
cQ) 0.40
C)
s::::
E
::l
0::

0.20

0.10 -1--:::. ,.,.,-

t~
'

__ I

.._~ :..

-

5Q% Reliability

. -.

-t

---

-

I
---+' ---

---

!

I

I
--- ~ -' - - -- -

~--.......... - - - - - - -
l !

M-

- .n ..___ _ _ .;..,, - - -

.HMA

. . -----t~ -

-Subgr.ade;

I

I

!

:

I

I I

I
I

! I --~--- '

I

'

. : _ _ __ _ , _;___ - - -

I

;

I

... -



--

1
:-

-

- --

-Aggregate -Base.--

0.00
0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Input Summary: Project Rural4 lane-2-7-12-good-actual.dgp 10/14/2008 12:33 PM

Project: Rural 4 lane-2-7-12-goodactual.dgp

General Information
Design Life Base/Subgrade construction : Pavement construction: Traffic open: Type of design
Analysis Parameters

20 years May, 2008 July, 2008 July, 2008 Flexible

Description: Rural Principal 4-lane-good soil-actual data

1 of 16

Performance Criteria
lnitiaiiRI (in/mi) TerminaiiRI (in/mi) AC Surface Down Cracking (Long. Cracking) (ft/mile): AC Bottom Up Cracking (Alligator Cracking)(%): AC Thermal Fracture {Transverse Cracking) (ft/mi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in): Permanent Deformation (Total Pavement) (in): Reflective cracking(%):

Limit Reliability

63

172

90

2000

90

25

90

1000

90

25

90

0.5

90

0.75

90

100

Location: Project ID: Section ID:

Rural Principal 4-lane-good-actual data

Date:

6/9/2008

Station/milepost format: Station/milepost begin: Station/milepost end: Traffic direction:

North bound

Default Input Level
Default input level

Level 3, Default and historical agency values.

Traffic
Initial two-way AADTT: Number of lanes in design direction: Percent of trucks in design direction (%): Percent of trucks in design lane (%): Operational speed (mph):

1800 2
50 85
55

Traffic --Volume Adjustment Factors

Monthly Adjustment Factors

(Level 3, Default MAF)

Month

Vehicle CI~ss .
Class .4 ' Classs crass 6 Class 7 Class,a Class g ,.Ciass10

January

1.00

1.00

1.00

1.00

1.00

1.00

f.OO

February

1.00

1.00

1.00

1.00

1.00

1.00

1.00

March

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Class.11~ Class 12

1.00

1.00

1.00

1.00

1.00

1.00

Class 13
1.00 1.00 1.00

Input Summary: Project Rural4 lane-2-7-12-good-actual.dgp 10/14/2008 12:33 PM

2 of 16

April May June July August September October November December

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Vehicle Class Distribution

(Level 1, Site Specific Distribution )

AADTT distribution by vehicle class

Class 4

0.0%

Class 5

14.9%

Class 6

12.6%

Class 7

0.2%

Class 8

6.2%

Class 9

62.3%

Class 10

1.8%

Class 11

0.7%

Class 12

0.8%

Class 13

0.5%

Hourly truck traffic distribution by pen.odbegm. nm. g:

Midnight

2.3% Noon

5.9%

1:00am

2.3% 1:00pm

5.9%

2:00am

2.3% 2:00pm

5.9%

3:00am

2.3% 3.:00 Pni

5.9%

4:00 ani

2.3% 4:00pm

4.6%

o:ooam

2.3% 5:00pm

4.6%

6:00am

5.0% 6:0_0 pm

4.6%

7:00am

5.0% 7:00pm

4.6%

8:00am

5.0% 8:00 Pril

3.1%

9:00am
10:00 am

5.0% 9:00pm
5.9% 1o:oo prn

3.1% 3.1%

11:00 ani

5.9% 11:00pm

3.1%

Traffic Growth Factor

Vehicle' Class Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

'Growth
Rate.
4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth Function Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound

Traffic --Axle Load Distribution Factors
Level3: Default

Traffic --General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

10

Design lane width (ft):

12

Number of Axles per Truck

Vehicle SingJe Tandem Tritfem:

CJ' ass

AXle

Axle I Ax~e

Class 4

2.50

0.00

0.00

Quad Axle ''
0.00

Input Summary: Project Rural41ane-2-7-12-good-actual.dgp 10/14/2008 12:33 PM

3 of 16

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.04

0.00

0.00

0.00

1.00

1.00

0.00

0.00

1.00

1.00

0.00

1.00

2.47

0.53

0.00

0.00

1.08

1.93

0.00

0.00

1.00

1.33

0.44

0.22

4.50

0.00

0.00

0.00

4.25

1.00

0.00

0.00

2.00

4.00

0.00

0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions,ft):

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi) :

120

Average Axle Spacing

Tandem axle(psi):

51.6

Tridem axle(psi):

49.2

Quad axle(psi):

49.2

Climate
icm file:
Latitude {degrees.minutes) Longitude (degrees.minutes) Elevation (ft) Depth of water table (ft)

C:\DG2002\Projects\GDOT M-E Design\Atlanta Airport.icm 33 .38 -84.26 974 50

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-37A viscosity based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 --Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ) :
Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):
Poisson's ratio:

Asphalt concrete 1.5
70
10.9 6 145.1 0.35 (user entered)

Input Summary: Project Rural4 lane-2-7-12-good-actual.dgp 10/14/2008 12:33 PM

Thermal Properties

Thermal conductivity asphalt (BTU/hr-ft-Fo):

0.67

Heat capacity asphalt (BTU/Ib-Fo):

0.23

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
14 40 70 100 130

0.1 855234 566220 155484 42360 10000

o~5
866483 741295 258053 76594 18079

Mixture E* (psi)

1

5

880544 993030

821334 1009408

309866 457657

103212 178704

25732 54139

10 1133637 1092157 532850 221330
69651

25 1555460 1219071 677287 297097
91155

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data
0 0

Test Softening point (P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp.
OF
120 140 275 77

Thermal Crack.mg Properties
Average Tensile Strength at 14F: Mixture VMA (%) Aggreagate coeff. thermal contraction (in./in.) Mix coeff. thermal contraction (in./in./F):

Binder Property
13000 2200 450 1.03
474.77 16.9 0.000005 0.000013

ow

Mid.

Load I. Temp. Temp.

Time -4oF

14F

(sec.) t1/psi) . (1/psi)

1 3.34E-07 5.04E-07

2 3.76E-07 6.04E-07

5 4.4E-07 7.68E-07

10 4.95E-07 9.21E-07

20 5.57E-07 1.11 E-06

50 6.51E-07 1.41 E-06

100 7.32E-07 1.69E-06

High Temp.
32F
(-~/psi)_'
6.74E-07 9.15E-07 1.37E-06 1.86E-06 2.53E-06 3.78E-06 5.14E-06

Layer 2 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ):

Asphalt concrete
2
70

4 of 16

Input Summary: Project Rural41ane-2-7-12-good-actual.dgp 10/14/2008 12:33 PM

Volumetric Properties as Built Effective binder content(%): Air voids (%): Total unit weight (pcf):

10.3
6
146.4

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-Fa):

0.67 0.23

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
14 40 70 100 130

0.1 948063 631790 199557 42729 12326

0.5 958932 805188 316779 80331 23153

Mixture-E* (psi)

1

5

972518 1081207

884998 1078331

376079 538752

107691 193954

33357 69403

10 1217068 1161103 616747 238578
91706

25 1624650 1275247 727400 307156 127327

Asphalt Binder Option : Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data
0 0

Test Softening_f!oint (P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp.
OF
120 140 275 77

Binder Property
13000 2200 450 1.03

Layer 3 -- Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete 7

General Properties

General

Reference temperature (F0 ) :

70

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

8.3 6 148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt {BTU/hr-ft-Fo): Heat capacity asphalt (BTU/Ib-F0 ) :

0.67 0.23

5 of 16

Input Summary: Project Rural4 lane-2-7-12-good-actual.dgp 10/14/2008 12:33 PM

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
14 40 70 100 130

0;1 840879 573018 200017 46395 10000

0.5 851932 753399 316664 80273 15326

Mixture E* (psi)

1

5

865748 976279

833300 1031157

374644 539280

106866 195998

22569 46188

10 1114443 1111954 622684 247581
59240

25 1528934 1272170 769096 316573 71922

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0 0

Test Softening point (P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp.
OF
120 140 275 77

Binder Propert y
13000 2200 450 1.03

Layer 4 -- Crushed stone
Unbound Material: Thickness( in):

Crushed stone 12

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):

Level 3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 13304

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI : Liquid Limit (LL) Compacted Layer Passing #200 sieve (%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

~ ie~e
0.001mm 0.002mm 0.020mm

Percent Passing

6 No 8.7 16.7 48.7 0.1152 0.5715 1.417 9.111 26.11

6 of 16

Input Summary: Project Rural4 lane-2-7-12-good-actual.dgp 10/14/2008 12:33 PM

#200 #100 #80 #60 #50 #40 #30 #20 #16 #10
#8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 2 1/2"
3"
3 1/2" 4"

8.7
12.9
33.8
72.7 88.8 100 100 100 100

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ft/hr): Optimum gravimetric water content (%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a b
c
Hr.

Val4e 3.7678 1.7964 0.74507 117.4

127.9 (derived) 2.70 (derived) 0.02801 {derived) 7.0 (derived) 59.9 (calculated)
Default values

Layer 5 -- A-2-4
Unbound Material: Thickness(in):
Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):
ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL)

A-2-4 Semi-infinite
Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 15914
2
14

7 of 16

Input Summary: Project Rural 4 lane-2-7-12-good-actual.dgp 10/14/2008 12:33 PM

Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

No 22.4 67.2 87.2 0.001921 0.0369 0.1115 0.3476 7.383

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10
#8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 21/2"
3"
3 1/2"
4"

Percent Passing
22.4 42.3
67.2
82.5 87.2 91.6 93.5 95.9 97.2 98.5 99
99.6 99.6

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ft/hr): Optimum gravimetric water content (%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a b
c
Hr.

Value 9.5043 0.64386 3.0636 189.6

124.0 (derived) 2.70 (derived) 0.0005854 (derived) 9.0 (derived) 67.5 (calculated}
Default values

Distress Model Calibration Settings - Flexible

8 of 16

Input Summary: Project Rural 4 lane-2-7-12-good-actual.dgp 10/14/2008 12:33 PM

AC Fatigue
k1
k2 k3

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 0.007566 3.9492 1.281

AC Rutting
k1
k2 k3

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) -3.35412 1.5606 0.4791

Standard Deviation Total Rutting (RUT):

0.24 *POWER(RUT,0.8026)+0.001

Thermal Fracture
k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std. Dev. (THERMAL):

0.1468 *THERMAL+ 65.027

CSM Fatigue
k1
k2
Subgrade Rutting Granular:
k1
Fine-grain:
k1
AC Cracking AC Top Down Cracking C1 (top)
C2 (top) C3 (top) C4 (top)
Standard Deviation (TOP)

Level3: NCHRP 1-37A coefficients (nationally calibrated values) 1 1
Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
2.03
1.35
7 3.5 0 1000
200 + 2300/(1 +exp(1.072-2.1654*1og(TOP+0.0001)))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4(bottom)
Standard Deviation (TOP)

1 1 0 6000
1.13+13/(1+exp(7.57-15.5*1og(BOTTOM+O.OOD1)))

CSM Cracking

9 of 16

Input Summary: Project Rural4 lane-2-7-12-good-actual.dgp 10/14/2008 12:33 PM

C1 (CSM) C2(CSM) C3 (CSM) C4 (CSM)

1 1 0 1000

Standard Deviation (CSM) CTB*1

IRI
IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40 0.4 0.008 0.015

IRI HMAIPCC Pavements C1(HMAIPCC) C2(HMAIPCC) C3(HMAIPCC) C4(HMAIPCC)

40.8 0.575 0.0014 0.00825

10 of 16

Rural 4 lane-2-7-12-good-actual.dgp 10/14/2008 12:34 PM

1 of 1

Surface Down Cracking - Longitudinal

3000

1

'

2700

-I

I

i

!

I . ---:-- :, -~~-r-\.. ;

' ----I~~-

.... ..... ---~~ ; ..,...,

-~--

!

2400

- - -I1I. -

l
------r't

I

I
I l ---r' _l ___._:' __

i

, I

-- -- +. - -

I

_ 21oo 1 : ---r-- ---t-- - ---1-- --~- - ----. -+.- -_______,.... --

- - I_

E

i

~

; ; 1800 - -- I _ _ _.IL_

.1; _ _ _ jI_ _- -~ Ij - - - --, -

c 32
(,)
(~.) 1500 -r--- --L--

! --4------~1

i

I

i----~- -----I~--

- - ... -~ ------

ccu
"0
~ 1200 tc:n

t . -:-- !

1

:rtf-='1 --~-- -

. i
---A

+--

0

..J
900 - - --...1-----i

I . - -. .- ---

-~' --~~ -:i --~-; ----

-- --

600 -1

r=

~i.-.

-

1 i

. -

j _J__ - - - - - - --- -;--- - ------~---~,- --..

-surface -Depth= 0.5" -Surface at Reliability -Design Limit

!

3000 ~,..-

:
0

~!-i-~------.,..... -~ - I

M - 0 _ _ ::... . . . _ __

4J<_ .. _ - _ ..................

0

WI

I I

\.
I

I .

'I

Whiliii!lllj iiililiiiiiili

IIj,

i
ii!iil f .

.. .!iililiiiii!ij' iiiiill!iiii......,....JI, :li@ll.li!IIIM,

I

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Rural4 lane-2-7-12-good-actual.dgp 10/14/2008 12:34 PM

1 of 1

Bottom Up Cracking -Alligator

100

.

I

I

:

J t

f

i' I

l

90

+---~

-I'-----;"--

~....i1------

j I

i " ---~~-----l. --~-~-------~ ..- ----

'



'

'

i !---1----:-- ...--. 80 ~---~

--~-

' ~ . .i _ _ ___ .__ '_ _ ' .

70

~- -

---1- -. ,_-- - I i____-- .

f

! '

1

l

;.

-~I--- --,l-"- -r; -- . . --~t - ____I

' !

....

-,.....---...... .

- -~ ~0 60
C)
:.1;::
0(n,s) 50
~
.21 40
<(

I



I

; -- : -;- ,

I I

: '

. !

.L---- ~---- -r------~

~

. -- ---<.- ----,I-- ----.: --- ---: -;-- --'.'-- -

<

. ...... -- - --- --- -~-- -----.--

i

30 +-- -

i.~-1---~---------+---- ------ -~~i' - 1 I

20

-Maximum Cracking

J

-Bottom Up Reliability

--Maximum Cracking Limit

10

h

j

.----.-- -

l

0

0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Rural4 lane-2-7-12-good-actual.dgp 10/14/2008 12:37 PM

1 of 1

Permanent Deformation: Rutting

0.80

'

'

0.70 ~-
0.60 ~
- 0.50
::r::::.: . ....ar..:.:..
cQ) 0.40
C"l
r:::
E
::I
0::::
0.30 _,_
0.20

AC Rutting Design Value = 0.5 Total Rutting Design Limit= 0.75
;

---------t---- ----
I
I
..........

---

.' --~- , _;,.
'

..._.. - -
9Q% Reliability 5Q% Reliability

r l

I

!

--1I.-:-

i
' i

--~-- -"---'-- - - ----- ----- ..

i

III i.- -.r~---~-~---.- --

HMA

------~ -
'

''"',:--------I-
'

- ---- --- ...... -~(--.-.-
Subgrad~

0.10

f

!

Aggregate Base

0.00
0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Input Summary: Project GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

Project: GDOT Urban Interstate 2-1112-poor-default.dgp

General Information Design Life Base/Subgrade construction: Pavement construction: Traffic open: Type of design

20 years June, 2008 July, 2008 July, 2008 Flexible

Description: Urban Primary Arterial Interstate (6 Lanes)

Analysis Parameters

1 of 10

Performance Criteria lnitiaiiRI (in/mi) TerminaiiRI (in/mi) AC Surface Down Cracking (Long. Cracking) (fUmile) : AC Bottom Up Cracking (Alligator Cracking)(%): AC Thermal Fracture (Transverse Cracking) (fUmi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in) : Permanent Deformation (Total Pavement) (in): Reflective cracking(%):

Limit Reliability

63

172

90

2000

90

25

90

1000

90

25

90

0.5

90

0.75

90

100

Location: Project ID: Section ID:
Date:

Principal Arterials- Interstate and Defense Routes 7/15/2008

Station/milepost format: Station/milepost begin: Station/milepost end: Traffic direction:

North bound

Default Input Level Default input level

Leve.l 3, Default and historical ag.ency values.

Traffic Initial two-way AADTT: Number of lanes in design direction: Percent of trucks in design direction (%): Percent of trucks in design lane(%): Operational speed (mph):

15000 3
50
60
55

Traffic --Volume Adjustment Factors

Monthly Adjustment Factors

(Level 3, Default MAF)

Month January February March

Cl~s$4
1.00 1.00 1.00

Class 5 . Class 6

1.00

1.00

1.00

1.00

1.00

1.00

Clas~7 .
1:00 1.00 1.00

Vehicle Class

Cl~ss~ Class 9

1.00

1.00

1.00

1.00

1.00

1.00

cntss 10 Ciass11' ;c1ass "1a Class 13

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Input Summary: Project GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

Ap ril

AI . U"U"

1.00

1.00

1.00

1.00

1.00

May

1.00

1.00

1.00

1.00

1.00

1.00

June

1.00

1.00

1.00

1.00

1.00

1.00

July

1.00

1.00

1.00

1.00

1.00

1.00

August

1.00

1.00

1.00

1.00

1.00

1.00

September

1.00

1.00

1.00

1.00

1.00

1.00

October

1.00

1.00

1.00

1.00

1.00

1.00

November

1.00

1.00

1.00

1.00

1.00

1.00

December

1.00

1.00

1.00

1.00

1.00

1.00

1.oo
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 of 10

i .OO

i .OO

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Vehicle Class Distribution

(Level 3, Default Distribution)

AADTT distribution by vehicle class

Class 4

1.0%

Class 5

23.8%

Class 6

4.2%

Class 7

0.5%

Class 8 Class 9

10.2% . 42:2%

Class 10

5.8%

Class 11

2.6%

Class 12

1.3%

Class 13

8.4%

Hourly truck traffic distribution

bJY pen.odbeg1. nn.mg:

Miqn.ight

2.3% Noon

5.9%

1:00 'am

2.3% 1:00pm

5.9%

2:00am

2.3% 2:00pm

5.9%

3;00 am.

2.3% 3:po pm

5.9%

4:00am

2.3% 4:0opm

4.6%

5:00am

2.3% s:oo pm

4.6%

6:ooam

5.0% 6:00pm

4.6%

7:00 qn:t

5.0% 7:00pm

4.6%

8:00am 9:00 .am
ta:OO' ar:rt
11:ooam

5.0% 8:0Qpm 5.0% 9:0opm 5.9% .10:00 pm 5.9% 11:00 pm

3.1% 3.1% 3.1% 3.1%

Traffic Growth Factor

Vehicle Class Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

GroWth
Rate
4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth F.unctlori Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound

Traffic --Axle Load Distribution Factors
Level3: Default

Traffic -- General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

10

Design lane width (ft):

12

Number of Axles per Truck

Vehicle Class Class 4

1 Shigle Tandem Tridem

J.\xle

1,\xle

AXle

1.62

0.39

0.00

Quad Axler
0.00

Input Summary: Project GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.00 1.02 1.00 2.38 1.13 1.19 4.29 3.52 2.15

0.00 0.99 0.26 0.67 1.93 1.09 0.26 1.14 2.13

0.00 0.00 0.83 0.00 0.00 0.89 0.06 0.06 0.35

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions, ft):

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi) :

120

Average Axle Spacing Tandem axle(psi): Tridem axle(psi): Quad axle(psi):

51.6 49.2 49.2

Climate
icm file:
Latitude (degrees.minutes) Longitude (degrees.minutes) Elevation (ft) Depth of water table (ft)

C:\DG2002\Projects\GDOT\Atlanta Airport.icm 33.38 -84.26 974 50

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-37A viscosity based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 --Asphalt concrete
Material type: Layer thickness (in):

General Properties

General

Reference

temperature

(F 0 ):

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

Poisson's ratio:

Asphalt concrete 1.5
70
10.9
6
145.1 0.35 (user entered)

3 of 10

Input Summary: Project GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

Thermal Properties

Thermal conductivity asphalt (BTU/hr-ft-F 0 ):

0.67

Heat capacity asphalt (BTU/Ib-F 0 ):

0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 16

Cumulative % Retained #4 sieve:

36

% Passing #200 sieve:

6

Asphalt Binder Option: A VTS:

Superpave binder grading 9. 7150 (correlated) -3.2080 (correlated)

temp.

Thermal Cracking Properties Average Tensile Strength at 14F: Mixture VIVIA (%) Aggreagate coeff. thermal contraction (in./in.) Mix coeff. thermal contraction (in./in./F):

I.:ow

Mid.

High

Load Temp. Temp. Temp...

1Jm~

-4oP

14F

32bF

(sec.) . (1ipsi) (1/psi) (1/psi)

1 4.31 E-07 6.15E-07 8.18E-07

2 4.66E-07 7.07E-07 1.02E-06

5 5~18~07 8.5E,.07 1;35E~06

10 5.61 E-07 9.76E-07 1.68E-06

20 6.07E-07 1.12E-06 2.09E-06

50 6.74E-07 1.35E-06 2.78E-06

100 7.29E-07 1.55E-06 3.46E-06

420.77 i6.9 0.000005 0.000013

Layer 2 --Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (P):
Volumetric Properties as Built Effective binder content(%):

Asphalt concrete 2
70 10.3

4 of 10

Input Summary: Project GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

Air voids (%) : Total unit weight (pcf) :

6 146.4

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ): Heat capacity asphalt (BTU/Ib-Fo):

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 32

Cumulative % Retained #4 sieve:

49

% Passing #200 sieve:

5

Asphalt Binder Option : A VTS:

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

H

Layer 3 --Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete 11

General Properties

General

Reference temperature (F 0 ) :

70

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

8.3 6 148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ): Heat capacity asphalt (BTU/Ib-Fo):

0 .67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 21

Cumulative % Retained 3/8 inch sieve: 39

Cumulative % Retained #4 sieve:

45

% Passing #200 sieve:

5

5 of 10

Input Summary: Project GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

Asphalt Binder Option: A VTS:
h temp.

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

6 of 10

Layer 4 --Crushed stone
Unbound Material: Thickness(in):

Crushed stone 12

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):

Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 30000

JCM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve (%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

1
6 No 8.7 20 44.7 0.1035 0.425 1.306 10.82 46.19

Sieye
0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16

Per.cent Passing
8.7 12.9 20

Input Summary: Project GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

#10 #8 #4 3/8" 1/2" 3/4" 1" 1 1/2" 2" 2 1/2" 3" 3 1/2" 4"

33.8
44 .7 57 .2 63.1 72.7 78.8 85.8 91 .6
97.6 97 .6

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ft/hr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Paranfeters a b
c
Hr.

Value 7.2555 1.3328 0.82422 117.4

127.2 (derived) 2.70 (derived) 0.05054 (derived) 7.4 (derived) 61.2 (calculated)
Default values

Layer 5 -- A-7-6
Unbound Material: Thickness(in):
Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):
ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL} Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

A-7-6 Semi-infinite
Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 11500
30 51 No 79.1 88.8 94.9 0.0002309 0.0005333 0.001231 0.01516 0.6616

7 of 10

Input Summary: Project GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10 #8 #4 3/8" 1/2" 3/4"
1" 11/2"
2" 2 1/2"
3" 3 1/2"
4"

Percent Passing
79.1 84.9
88.8
93 94.9 96.9 97.5 98.3 98.8 99.3 99.6
99.9 99.9

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ft/hr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

;Parameters a b
c
Hr.

. Valu~ 136.42 0.51828
0.032384 500

97.7 (derived) 2.70 (derived) 8.946e-006 (derived) 22.2 (derived) 82.7 (calculated)
Default values

Distress Model Calibration Settings - Flexible

Level 3: NCHRP 1-37A coefficients (nationally

AC Fatigue

calibrated values)

k1

0.007566

k2

3.9492

k3

1.281

AC Rutting
k1

Level3: NCHRP 1-37A coefficients (nationally calibrated values) -3.35412

8 of 10

Input Summary: Project GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

k2

1.5606

k3

0.4791

Standard Deviation Total Rutting (RUT):

0.24*POWER(RUT,0.8026)+0.001

Thermal Fracture
k1

Level3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std. Dev. (THERMAL):

0.1468 *THERMAL+ 65.027

CSM Fatigue
k1 k2
Subgrade Rutting Granular:
k1 Fine-grain:
k1
AC Cracking AC Top Down Cracking
C1 (top) C2 (top) C3 (top) C4 (top)
Standard Deviation (TOP)

Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
1 1
Level3: NCHRP 1-37A coefficients (nationally calibrated values)
2.03
1.35
7 3.5 0 1000
200 + 2300/(1+exp(1.072-2.1654*1og{TOP+0.0001)))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom)
Standard Deviation (TOP)

1 1 0
6000
1.13+13/(1 +exp(7 .57-15.5*1og(BOTTOM+0.0001)))

CSM Cracking
C1 (CSM) C2 (CSM) C3 (CSM) C4 (CSM)
Standard Deviation (CSM)

1 1 0
1000
CTB"1

IRI

9 of 10

Input Summary: Project GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40 0.4 0.008 0.015

IRI HMA/PCC Pavements C1(HMA/PCC) C2(HMA/PCC) C3(HMA/PCC) C4(HMA/PCC)

40.8 0.575 0.0014 0.00825

1oof 10

GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:47 PM

1 of 1

Surface Down Cracking -Longitudinal

3000

'

2700 ---,----~:--- ~-----.1

t

I

I

' l
!
!

2400 ~

~

:

_..1-...... _, ....; -~ -,._,~ ~ -~ - .... ......--. ... ......_, ... ...........-.A.-

..:... - ......-..

~

'i ~ ' I' '

2100

:::E ~

-; 1800

r::

:s2
u

~
0c;;

1500 -1

"=0
~ 1200
_.rt::
0

900

600 ~
i 300

'

- -+ ---- ----- -'-

- !---- ~~--

-j

- r ----

!

----,f------ Ii- -. I

1
'

--tI

- r - -
+-- :

'

- ----- ----+ --- ---

!

--~: __.. .___..,-.---=----..~;

I I

.

I

~

'

:

I

, I

. "~ --- --~-1-..-

'

.

I I ';;;; ; 1-

i '

'
I

;; ; .I

::"1'1 l iiJ;;""~~-;j;';;llw'i!!mJ!PmnnJIIi; :; "

......,- -
- -;,;

-surface -Depth == 0.5'' -Surface at Reliability -Design Limit

0 -I





F



I

'
l

f""""""""""' :

0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

GDOT Urban Interstate 2-11-12-poor-default.dgp 10/14/2008 12:48 PM

1 of 'I

100

90 -1

80 -1

70

-
?fl.
-; 60

o~..Cll-:::

so

~
~ 40

30 I

20 -l

]
0

Bottom Up Cracking -Alligator

, j

i ;

f I

1

1 I
I .
l
1
I;f
I I
I

! I

:

l I

I
i

I
'

' ~

l . - -- -;------ - ------ ; -- 1

~-:'- ~ - ~-- r' ------!_--- - ----~-

'

,
___ Ii

I'---l----~.I----

I

j

!

I

!_ __ _ ,__ __:, - --_- - . - -

!



:

I

l i I1

i

1

'

!

~ '

I
!

t

. -I

. e
~-

l

1
.

'

! 1

- -~ ----!"- -~1- -- , - . - - - - ... - -

- 1I -

- :1

T ! I

' I

! 1

,.

'

r

: I

! I

:

-+I ---- -~; -

~

.;.

'

l

I

I

!

;_ - ,---

- .- -----

'II

I I

I 1I

~

I 1
I

I
I I

I t
I

'

i~---!t---

l i

---- - ---- - ---- -i - - .;.... -

..

I
---t---t;--- : ----:- - i

iI - !'

I

l

;

i

_L_ -r;'--:-;-- i .I;
j
l
+ !

----iI.!~~~ ---.-ti1----.---t"I'"-------;r1I!---------TIiI

-

-

--! r-
I

I

i

,~ ---~.- ,
I

~..---;-1.l -........- ~ ~~ -- ~ -"-

;

I

.. ..,_..,._.

-Maximum Cracking --Bottom Up Reliability -Maximum Cracking Limit

----- I
-__,.._~

i ... I

! !"":: i. i ' "'""' ! ':.. '\ I I

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

GDOT l)rpan Interstate 2-11-12-poor-default.dgp
10/14/2008 12:50 PM

1 of 1

Permanent Deformation: Rutting
0.80

0.70 ~0.60

AC Rutting Design Value = 0.5 Total Rutting Design Limit= 0.75
l

0.50 J1
-c -..c
-c.
cQ) 0.40

-' .- - - - ,I

C)

c

E

::I

0::: 0.30 ~

t

!~ !

:

__ _! -
I

.

' -----t-- ----- -

-

'

......--90% -Reliability.. 50% Reliability

- ---

I)- - -- - -~- --I -

---r--'

:

- -[------ rj ---

l

HMA.

1

0.10 -l:f
0.00 0

~~

:

'

24

48

h- [

EiiiijrrrirM

- - - -'Sutigraue,

~ l

rlI

I

t

I

I

- - -- - --r---- --- - - --- -

~

Aggregate Base'

'

t

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Input Summary: Project GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:51 PM

Project: GDOT Urban Interstate 2-1012-good-default.dgp

General Information
Design Life Base/Subgrade construction: Pavement construction: Traffic open : Type of design

20 years June,2008 July, 2008 July, 2008 Flexible

Description : Urban Primary Arteria/Interstate (6 Lanes)

Analysis Parameters

1 of 10

Performance Criteria
lnitiaiiRI (in/mi) TerniinaiiRI (in/mi) AC Surface Down Cracking (Long. Cracking) (fUmile}: AC Bottom Up Cracking (Alligator Cracking)(%): AC Thermal Fracture (Transverse Cracking) (ftlmi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in): Permanent Deformation (Total Pavement) (in): Reflective cracking(%):

Limit
63 172 2000
25 1000
25 0.5 0.75 100

Reliability
90 90 90 90 90 90 90

Location: Project ID: Section ID:
Date:

Principal Arterials - Interstate and Defense Routes 7/15/2008

Station/milepost format: Station/milepost begin: Station/milepost end: Traffic direction:

North bound

Default Input Level
- Default inp1.1t level

Level 3; Defa1.1lt and nistorical agency values.

Traffic
Initial two-way AADTT: Number of lanes in design direction: Percent of trucks in design direction (%): Percent of trucks in design lane (%): Operational speed (mph):

15000 3
50 60 55

Traffic-- Volume Adjustment Factors

Monthly Adjustment Factors

(Level3, Default MAF)

Month

venicl.e Glass Class 4 . Clcis$5 Class 6 class 7 Class 8 ' Qia~s, 9 :

January

1.00

1.00

1.00

1.00

1.00

1.00

February March

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Class tO. Class 1.1 ' Class12 .crass 13

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Input Summary: Project GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:51 PM

Aprii May June Jujy Aug_ust September October November December

i.OO

i.OO

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

i.OO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i.OO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i.OO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i.Ou 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

i .OO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 of 10

i.OO

i.Ou

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Vehicle Class Distribution

(Level 3, Default Distribution)

AADTT distribution by vehicle class

Class 4

1.0%

Class 5

23.8%

Class 6

4.2%

Class 7

0.5%

Class 8

10.2%

Class 9

42.2%

Class 10

5.8%

Class 11

2.6%

Class 12

1.3%

Class 13

8.4%

Hourly truck traffic distribution
blYp_en.odbegm. n1.ng:

Midnight.

2.3% Noori

5.9%

1:00am

2.3% 1:00 prri

5.9%

2:00 ar:'n

2.3% 2;00 pm

5.9%

3:00am

2.3% 3~00 pm

5.9%

4:00. am 5:00am 6:oo am

2.3% 4:00pm
2.3% !:i:OQ' prri
5.0% 6:oopm

4.6% 4.6% 4.6%

7:00am

5.0% 7:Qo prn

4.6%

8:00am

5.0% 8:00pm

3.1%

~:oo am 10:00am

5.0% 9:00 PITJ 5.9% 10:oo:pm

3.1% 3.1%

11:00 am

5.9% ..11':00 ptn

3.1%

Traffic Growth Factor

Vehicle Class Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

Growth Rate 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth Function Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound

Traffic -- Axle Load Distribution Factors
Level3: Default

Traffic --General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

10

Design lane width (ft):

12

Number of Axles per Truck

vehicle I <!:' lass
Class 4

Sihgle Ta~dern Tridem

,.AXle

.:Axle ... Axle

1.62

0.39

0.00

Quad Axle,
0.00

Input Summary: Project GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:51 PM

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.00 1.02 1.00 2.38 1.13 1.19 4.29 3.52 2.15

0.00 0.99 0.26 0.67 1.93 1.09 0.26 1.14 2.13

0.00 0.00 0.83 0.00 0.00 0.89 0.06 0.06 0.35

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions,ft):

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi) :

120

Average Axle Spacing

Tandem axle(psi):

51.6

Tridem axle(psi):

49.2

Quad axle(psi):

49.2

Climate
icm file:
Latitude (degrees.minutes) Longitude (degrees. minutes) Elevation (ft) Depth of water table (ft)

C:\DG2002\Projects\GDOT\Atlanta Airport.icm 33.38 -84.26 974 50

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-37A viscosity based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ):
Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):
Poisson's ratio:

Asphalt concrete 1.5
70
10.9 6 145.1 0.35 (user entered)

3 of 10

Input Summary: Project GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:51 PM

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-Fo): Heat capacity asphalt (BTU/Ib-F o):

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 16

Cumulative % Retained #4 sieve:

36

% Passing #200 sieve:

6

Asphalt Binder Option: A VTS:

Superpave binder grading 9.7150 (correlated) -3.2080 (correlated)

h temp.
oc

Thermal Cracking Properties
Average Tensile Strength at 14F:
Mixture VMA (%) Aggreagate coeff. thermal contraction (in./in.) Mix coeff. thermal contraction (in./in./F):

L QW

Mid.

Load Time

Temp.
. -4~F

T ef11p .
14F

(sec). - (1/psi) (1/psi)

1 4.31E-07 6.15E-07

2 4.66E-07 7.07E-07 5 -5:1-SE.;;o--7 - 8:5E::O/

10 5.61E-07 9.76E-07

20 6.07E-07 1.12E-06

50 6.74E-07 1.35E-06

100 7.29E-07 1.55E-06

H1g h Temp.
31F (1/ps i)
8.18E-07 1.02E-06
1.35E~06
1.68E-06 2 .09E-06 2 .78E-06 3.46E-06

420.77 16.9 0.000005 0.000013

Layer 2 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ) :
Volumetric Properties as Built Effective binder content(%):

Asphalt concrete
2
70 10.3

4 of 10

Input Summary: Project GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:51 PM

Air voids(%): Total unit weight (pcf):

6
146.4

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-Fo): Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 0

Cumulative % Retained 3/8 inch sieve: 32

Cumulative % Retained #4 sieve:

49

% Passing #200 sieve:

5

Asphalt Binder Option: A VTS:

Superpave binder grading 10.9800 (correlated) -3 .6800 (correlated)

High temp~

Layer 3 -- Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete 10

General Properties

General

Reference

temperature

(F 0 ):

70

Volumetric Properties as Built Effective binder content(%): Air voids (%): Total unit weight (pcf):

8.3
6
148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-Fo): Heat capacity asphalt (BTU/Ib-F0 ) :

0.67 0.23

Asphalt Mix

Cumulative % Retained 3/4 inch sieve: 21

Cumulative % Retained 3/8 inch sieve: 39

Cumulative % Retained #4 sieve:

45

% Passing #200 sieve:

5

5 of 10

Input Summary: Project GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:51 PM

Asphalt Binder Option : A VTS:
High temp.

Superpave binder grading 10.9800 (correlated) -3.6800 (correlated)

6 of 10

Layer 4 -- Crushed stone
Unbound Material: Thickness(in):

Crushed stone 12

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure, Ko: Modulus (input) (psi):

Level 3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 30000

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve (%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

1 6 No 8.7 20 44.7 0.1035 0.425 -1.306 10.82 46.19

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16

Percent Passing
8.7 12.9 20

Input Summary: Project GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:51 PM

#10 #8 #4 3/8" 1/2" 3/4" 1" 1 1/2" 2" 2 1/2" 3" 3 1/2" 4"

33.8
44.7 57.2 63.1 72.7 78.8 85.8 91.6
97.6 97.6

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fUhr): Optimum gravimetric water content(%) : Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a b
c
Hr.

Value 7.2555 1.3328 0.82422 117.4

127.2 (derived) 2.70 (derived) 0.05054 (derived) 7.4 (derived) 61.2 (calculated)
Default values

Layer 5 -- A-2-4 Unbound Material: Thickness(in):
Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):
ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) D30(mm) D60(mm) D90(mm)

A-2-4 Semi-infinite
Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 21500
2 14 No 22.4 67.2 87.2 0.001921 0.0369 0.1115 0.3476 7.383

7 of 10

Input Summary: Project GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:51 PM

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10 #8 #4 3/8" 1/2" 3/4"
1" 1 1/2"
2" 21/2"
3" 3 1/2"
4"

Percent Passing
22.4 42.3
67.2
82.5 87.2 91 .6 93.5 95 .9 97.2 98.5 99
99.6 99.6

CalcuIated/Derived Parameters Maximum dry unit weight (pet): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ftlhr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters c,
a b c Hr.

Value 9.5043 0.64386 3.0636 189.6

124.0 (derived) 2. 70 (derived) 0.0005854 (derived) 9.0 (derived) 67.5 (calculated)
Default values

Distress Model Calibration Settings - Flexible

Level 3: NCHRP 1-37A coefficients (nationally

AC Fatigue

calibrated values)

k1

0.007566

k2

3.9492

k3

1.281

AC Rutting
k1

Level3: NCHRP 1-37A coefficients (nationally calibrated values) -3.35412

8 of 10

Input Summary: Project GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:51 PM

k2

1.5606

k3

0.4791

Standard Deviation Total Rutting (RUT):

0.24*POWER(RUT,0.8026)+0.001

Thermal Fracture k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std. Dev. (THERMAL) :

0.1468 *THERMAL+ 65.027

CSM Fatigue k1 k2
Subgrade Rutting Granular: k1 Fine-grain: k1
AC Cracking AC Top Down Cracking C1 (top) C2 (top) C3 (top) C4 (top)
Standard Deviation (TOP)

Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
1 1
Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
2.03
1.35
7 3.5 0 1000
200 + 2300/(1 +exp(1.072-2.1654*1og(TOP+0.0001 )))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom)
Standard Deviation (TOP)

1 1 0 6000
1.13+13/(1 +e'Xp(7.57-15.5*1og(BOTTOM+0.0001)))

CSM Cracking C1 (CSM) C2 (CSM) C3 (CSM) C4 (CSM)
Standard Deviation (CSM)

1 1 0 1000
CTB*1

IRI

9 of 10

Input Summary: Project GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:51 PM

IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40 0.4 0.008 0.015

IRI HMAIPCC Pavements C1(HMA/PCC) C2(HMA/PCC) C3(HMA/PCC) C4(HMAIPCC)

40.8 0.575 0.0014 0.00825

10 of 10

GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:52 PM

1 of 1

Surface Down Cracking - Longitudinal

3000r----;-----:----l, -----~ ~---;----~----~--~----~--------~

2700 ------Ir.-

;---~"-

1

'

, - .......

:

j

-r .- - - 2400 ----rI -----; ~-~TI

!
~t: ----

i
' ~

I j

-+---" + -- --. 2100 ~

~

~---

-r-

i

- --

'

------1-

- ' - --L --- ...---~-- --- ~ ----

1
-- -t-

I

1

---- -*':"-~- - ~---.

'

--"t' --

..1..-.. ---~- '-"'-~ ~ ~ r....

-o"41

,_.., . _._.....' ,_ ..

.

'

I

-surface
= --o- Depth 0.5"
-Surface at Reliability
-Design Limit

l; !I vuu ~~amii~mD~~mD~~~mm~=.

0 .j

II

;
I

'l !I

I

r

----r-1-:

I !

t

IiI

I .
!

I

j

4 ""

h ihiilii.'hiiHiitii!

: '
.I

; I

, Jiiijiiliihiiiiiiii

!

0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:52 PM

1 of 1

Bottom Up Cracking -Alligator

100
90 1

I
1
r-1 ~---

! I

I

I

I

.

I

I

f

' ~

____ I ' -- ..._.,

..... ......- -; -- I

i

-.- --~- ,~--~~~ .....

I

... .
__. _~-------~ ..._

.

~

I

~

.

I

80

' j
- ~-.

--------

.--

-



--------- ..T

.------ -- ;-------- . .

70 ---+I'----+-

. . _JI~ _-~- I,' --;

- -,.'-

--

~.. J.- --. -9 . ~r~ -- --~- - ~- -~ -1

-~~~ 60
~
u(.)
CU
~ 50 .S
'~ 40
<
30

I 1

1
I
L

I

- . r - - - ""-t-- ____,_ _ . ----<--- -- - - - -

I I
I
r
I

I
I "
I ~

I

,_ _ _ .,i:

I

I

I

JI. .

--

. j
i

i - - - ___.!~------'- ________:_

I
!

I I i

!. ;

!

--r-' ---- - TI - ------ - I -- '

-- - -.--- - - --I--

l
i

I '

; I

I

I l --~ro

-,

I
--I T~-~~----~i-~~-

-



-rJ ~--

-



"~

-

-

-

-~--~

20

I

-l l l ; l l -i-l. l----~-~ --r--11--;--:~~--r---------

- r I .- 10 +---+-1 1

II -

i -

i
I

---;~--i'---~-------~-

0 I

; II

'lii:i!ii iiii

I

I

;

; """' ., IIIIIU!IIil:"'""""""iiiiiii '

"l

I

0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

-Maximum Cracking --o- Bottom Up Reliability --Maximum Cracking Lirnit

GDOT Urban Interstate 2-10-12-good-default.dgp 10/14/2008 12:54 PM

1 of 1

Permanent Deformation: Rutting

0.80
0.70 ~-
0.60 +
--- I 0.50
s::: .s:::
Q.
cQ) 0.40
C)
s:::
E
::I
0::

AC Rutting Design Value = 0.5 Total Rutting Design Limit= 0.75

j
l
- -!-
--

-- L._ -- ----- ~- -- - .. --- - ..
''~....;

' \'" l

r

I

.

I -:---~- --~ ~--.~ - - ---~--- !

I

I

!

j

I

'

I

I

...,;_-.... ,.,._._.,._ --~

:
', __ , --- .. - ----1

. ----. - - --Ir --

-go.% Relia5HTty
50% Reliability
HMA

0.20

~~----:~---~ - ~-c:c,--w;---------~- ~----',_

., --sobgrade..

0.10 ~-

:

____j_

!

-~-----

-- - - ---- - - ------ ( --. Aggregate Base

0.00
0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Input Summary: Project Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:55 PM

1 of 16

Project: Urban lnterstate-2-16-12good-actual.dgp

General Information
Design Life Base/Subgrade construction: Pavement construction: Traffic open: Type of design

20 years May, 2008 July, 2008 July, 2008 Flexible

Description: Urban Primary Arterial Interstate-good soil-actual data

Analysis Parameters

Performance Criteria
lnitiaiiRI (in/mi) TerminaiiRI (in/mi) AC Surface Down Cracking (Long. Cracking) (ftlmile): AC Bottom Up Cracking (Alligator Cracking)(%): AC Thermal Fracture (Transverse Cracking) (fUmi): Chemically Stabilized Layer (Fatigue Fracture) Permanent Deformation (AC Only) (in): Permanent Deformation (Total Pavement) (in): Reflective cracking (%):

Limit Reliability

63

172

90

2000

90

25

90

1000

90

25

90

0.5

90

0.75

90

100

Location: Project ID: Section ID:

Urban Interstate Primary-good-actual data

Date:

6/9/2008

Station/milepost format: Station/milepost begin: Station/milepost end: Traffic direction:

North bound

Default Input Level
Default input level

Level 3, Default and historical agency values:

Traffic
Initial two-way AADIT: Number of lanes in design direction: Percent of trucks in design direction (%): Percent of trucks in design lane(%): Operational speed (mph):

15000 3
50 60 55

Traffic --Volume Adjustment Factors

Monthly Adjustment Factors

(Level3, Default MAF)

Vehicle Clas.s

Monfh January February

Class4 1.00 1.00

Class 5 1.00 1.00

Class 6' Class 7

1.00

1.00

1.00

1.00

Class 8 1.00 1.00

Class:s . Class.10 :c1ass11

1.00

1.00

1.00

1.00

1.00

1.00

March

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Class 12 class 13'

1.00

1.00

1.00

1.00

1.00

1.00

Input Summary: Project Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:55 PM

2 of 16

April

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

May

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

June

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

July

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

August

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

September

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

October

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

November

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

December

1.00

1.00

1.00

1.00

1.00

1.00 . 1.00

1.00

1.00

1.00

Vehicle Class Distribution

(Level 1, Site Specific Distribution )

AADTT distribution by vehicle class

Class 4

0.0%

Class 5

12.8%

Class 6

10.9%

Class 7

0.2%

Class 8

8.1%

Class 9

60 .3%

Class 10

1.3%

Class 11

3.6%

Class 12

1.7%

Class 13

1.1%

Hourly truck traffic distribution bJY pen.odbeg.1nn.mg:

Midnight

2.3% Noon

5.9%

1:ooam 2:00am 3:0o am 4:ooam

2.3% 1:oopm
2.3% ~:00 Pill
2.3% 3:00pm
2.3% 4:00 pin

5.9% 5.9% 5.9% 4.6%

5:00 arn

2.3% 5;00 pril

4.6%

6:0oam T:OO am

5.0% 6:00 Pill 5.0% 7:00pm

4.6% 4.6%

a:oQam 9:oOam
Jo:oo am
n :oo am

5.0% 8:oopm 5.0% 9:00 pril
5.9% 10:00 pr\1
5.9% 11:oopm

3.1% 3.1% 3.1% 3.1%

Traffic Growth Factor

Vehicle Class Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

Growth ,Rate 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

Growth Function Compound Compound
Com~J_ound
Compound Compound Compound Compound Compound Compound Compound

Traffic -- Axle Load Distribution Factors
Level 3: Default

Traffic -- General Traffic Inputs

Mean wheel location (inches from the lane

18

marking):

Traffic wander standard deviation (in):

10

Design lane width (ft):

12

Number of Axles per Truck

Vehicle l Class Class 4

Single Tand'em . Tridem

Axle

AxJe . Axle

1.90

0.13

0.0 0

Quad . Axje
0.00

Input Summary: Project Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:55 PM

3 of 16

Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

2.04 1.00 1.00 2.35 1.12 1.00 4.67 3.48 4.05

0.00 0.99 0.33 0.60 1.89 1.31 0.13 1.24 1.59

0.00 0.00 0.33 0.00 0.00 0.58 0.00 0.00 0.00

0.00 0.00 0.67 0.00 0.00 0.10 0.00 0.00 0.00

Axle Configuration

Average axle width (edge-to-edge) outside

8.5

dimensions, ft):

Dual tire spacing (in):

12

Axle Configuration

Tire Pressure (psi) :

120

Average Axle Spacing Tandem axle(psi): Tridem axle(psi): Quad axle(psi):

51.6 49.2 49.2

Climate
icm file:
Latitude (degrees.minutes) Longitude (degrees.minutes) Elevation (ft) Depth of water table (ft)

C:\DG2002\Projects\GDOT M-E Design\Atlanta Airport.icm 33.38 -84.26 974 50

Structure--Design Features

HMA E* Predictive Model: HMA Rutting Model coefficients: Endurance Limit (microstrain):

NCHRP 1-37A viscosity based model. NCHRP 1-37A coefficients None (0 microstrain)

Structure--Layers Layer 1 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ):
Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pet):
Poisson's ratio:

Asphalt concrete 1.5
70
10.9
6
145.1 0.35 (user entered)

Input Summary: Project Urban lnterstate-2-16-12-good-actual.dgp 10/1 4/2008 12:55 PM

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-Fo):

0.67 0.23

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature OF
10 40 70 100 130

0.1 1047208 566220 155484
42360 10000

0.5 1060501 741295 258053
76594 18079

M ixture E (psi)

1

5

1077117 1210049

821334 1009408

309866 457657

103212 178704

25732 54139

10 1376214 1092157 532850 221330
69651

25 1874707 1219071 677287 297097
91155

Asphalt Binder Option: ---Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data .
0 0

Test Softening point (P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp.
~F
140 140 275 77

Binder Property
13000 4500 950 1.03

Thermal Crackmg Properties Average Tensile Strength at 14F: Mixture VMA (%) Aggreagate coeff. thermal contraction (in./in.) Mix coeff. thermal contraction (in./in./F):

1-QW

Mid.

High

Lmid T emp. Temp. Temp.

' Tiine : -4oF

14F

32F

. (sec). (1/p-si) . . (~ /psi) ' (1fpsi) .

1 2.7E-07 4.26E-07 5.74E-07

2 2.96E-07 4.96E-07 7.31E-07

5 3.33E-07 6.05E-07 1.01E-06

10 3.65E-07 7.04E-07 1.28E-06

20 3.99E-07 8.19E-07 1.63E-06

50 4.5E-07 1E-06 2.25E-06

100 4.92E-07 1.16E-06 2.86E-06

393.04 16.9 0.000005 0.000013

Layer 2 -- Asphalt concrete
Material type: Layer thickness (in):
General Properties General Reference temperature (F0 ):

Asphalt concrete
2
70

4 of 16

Input Summary: Project Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:55 PM

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

10.3 6 146.4

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-Fa): Heat capacity asphalt (BTU/Ib-Fa):

0.67 0.23

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
OF
10 40 70 100 130

0.1 1159233 631790 199557 42729
12326

0.5 1171979 805188 316779
80331 23153

Mixture E* (psi)

1

5

1187912 1315374

884998 1078331

376079 538752

107691 193954

33357 69403

10 1474701 1161103 616747 238578
91706

25 1952683 1275247 727400 307156 127327

Asphalt Binder Option: Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0 0

Test Softening point (P) Absolute viscosity (P) Kinematic viscosity (CS) Specific gravity

Temp.
OF
120 140 275 77

Binder Propel':ty
13000 2200 450 1.03

Layer 3 --Asphalt concrete
Material type: Layer thickness (in):

Asphalt concrete 16

General Properties

General

Reference temperature (F0 ):

70

Volumetric Properties as Built Effective binder content(%): Air voids(%): Total unit weight (pcf):

8.3
6
148.3

Poisson's ratio:

0.35 (user entered)

Thermal Properties Thermal conductivity asphalt (BTU/hr-ft-F0 ) : Heat capacity asphalt (BTU/Ib-F0 ):

0.67 0.23

5 of 16

Input Summary: Project Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:55 PM

Asphalt Mix

Number of temperatures:

5

Number of frequencies:

6

Temperature
Of
10 40 70 100 130

0.1
1031016 573018 200017 46395 10000

0.5
1044161 753399 316664 80273 15326

Mixture E* (psi)

1

5

1060592 1192041

833300 1031157

374644 539280

106866 195998

22569 46188

10
1356353 1111954 622684 247581 59240

25
1849287 1272170 769096 316573
71922

Asphalt Binder Option : Number of penetrations: Number of Brookfield viscosities:

Conventional binder test data 0 0

Te.st Softening point (P) Absolute viscosityjP) Kinematic viscosity (CS) Specific gravity

Temp.
Of
120 140 275 77

BindeF Property
13000 2200 450 1.03

Layer 4 -- Crushed stone
Unbound Material: Thickness(in):

Crushed stone 12

Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):

Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 13304

ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve(%): Passing #40 Passing #4 sieve(%): D10(mm) D20(mm) 030(mm) D60(mm) D90(mm)

1 6 No 8.7 16.7 48.7 0.1152 0.5715 1.417 9.111 26.11

SJ~ve
0~001mm
0.002mm 0.020mm

Percent Passing

6 of 16

Input Summary: Project Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:55 PM

#200 #100 #80 #60 #50 #40 #30 #20 #16 #10 #8 #4 3/8" 1/2" 3/4" 1" 11/2" 2" 2 1/2" 3" 3 1/2" 4"

8.7
12.9
33.8
72.7 88.8 100 100 100 100

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (fUhr): Optimum gravimetric water content(%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

Parameters a
b
c
Hr.

Value
3.7678 1.7964 0.74507 117.4

127.9 (derived) 2.70 (derived) 0.02801 (derived) 7.0 (derived) 59.9 (calculated)
Default values

Layer 5 -- A-2-4 Unbound Material: Thickness(in):
Strength Properties Input Level: Analysis Type: Poisson's ratio: Coefficient of lateral pressure,Ko: Modulus (input) (psi):
ICM Inputs Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL)

A-2-4 Semi-infinite
Level3 ICM inputs (ICM Calculated Modulus) 0.35 0.5 15914
2 14

7 of 16

Input Summary: Project Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:55 PM

Compacted Layer Passing #200 sieve (%) : Passing #40 Passing #4 sieve(%): D10(mm) 020(mm) 030(mm) 060(mm) 090(mm)

No 22.4 67.2 87.2 0.001921 0.0369 0.1115 0.3476 7.383

Sieve 0.001mm 0.002mm 0.020mm
#200 #100 #80 #60 #50 #40 #30 #20 #16 #10
#8 #4 3/8" 1/2" Ji4"" 1" 11/2" 2" 2 1/2" 3" 3 1/2" 4"

Percent Passing
22.4 42.3
67.2
82.5 87.2 91.6 93.5 !:lb.!:! 97.2 98.5 99
99.6 99.6

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ft/hr): Optimum gravimetric water content(%): Calculated degree of saturation(%):

Soil water characteristic curve parameters:

Parameters
a b
c
Hr.

Value
9.5043 0.64386 3.0636
189.6

124.0 (derived) 2.70 (derived) 0.0005854 (derived) 9.0 (derived) 67.5 (calculated)
Default values

Distress Model Calibration Settings - Flexible

8 of 16

Input Summary: Project Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:55 PM

AC Fatigue
k1
k2 k3

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 0.007566 3.9492 1.281

AC Rutting
k1
k2 k3

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) -3 .35412 1.5606 0.4791

Standard Deviation Total Rutting (RUT):

0.24*POWER(RUT,0.8026)+0.00 1

Thermal Fracture
k1

Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5

Std. Dev. (THERMAL) :

0.1468 *THERMAL+ 65.027

CSM Fatigue
k1
k2
Subgrade Rutting Granular:
k1
Fine-grain:
k1
AC Cracking AC Top Down Cracking
C1 (top) C2 (top) C3 (top) C4 (top)
Standard Deviation (TOP)

Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
1 1
Level 3: NCHRP 1-37A coefficients (nationally calibrated values)
2.03
1.35
7
3.5
0
1000
200 + 2300/(1+exp(1.072-2.1654*1og(TOP+0.0001)))

AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom)
Standard Deviation (TOP)

1 1 0
6000
1.13+13/(1 +exp(7.57-15.5*1og(BOTTOM+0.0001)))

CSM Cracking

9 of 16

Input Summary: Project Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:55 PM

C1 (CSM) C2 (CSM) C3 (CSM) C4 (CSM)

i 1 0 1000

Standard Deviation (CSM) CTB*1

IRI
IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)

40
0.4
0.008 0.015

- IRI HMAIPCC Pavements C1(HMA/PCC) C2(HMA/PCC) C3(HMA/PCC) C4(HMA/PCC)

40.8 0.575 0.0014 0.00825

10 of 16

Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:55 PM

1 of 1

Surface Down Cracking -Longitudinal

3000

i I

2700

-1

1

I

!

2400 i

I

!

:

l

l

J

!



21oo ..._ _ _L __ _j__

==-

I

I

= E
-; 1800

l '
I'

l ' I

I

_ji
,.

I I 1

-~ -----+

l

I i
;

t

i

I

r

j

i

I

.

i i

:

;

;.,..______.J....______~--l..~----..---1. ~ ---- .

!

:

'

.

;

1 i

I
I

.
:

'
I

I I

:

l . ----~ ---- -!-

. '
;

i
I
I

{

1

j

;

I

!.._ _ __;________;_- -- -- -----

!

i

:

I

~

r

!

'

l

'

!

-.

!

I

tsoo
iii
s::::
"'C
~ 1200
C) s::::
0 ...J
900 <
soo j
1 300

i ! ,_ ___

I :
~-1 .
I I !
I1 I --,

!,-4 : I ! --t
I II .I

:: -----i----i.------~~------~------

j

I

I

.

I ; "'"""', ----

-surface
-o- Depth =0.5"
-surface at Reliability
--Design Limit

0 -1

I

I

'

'

I

I

I

I

I

0

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Urban lnterstate-2-16-12-good-actual.dg[p 10/14/2008 12:56 PM

1 of 1

Bottom Up Cracking -Alligator

-t 100

I

I

90

1
,- -

" 80 -l-

I

-I
I

l

I i

.

I I

:

....!..... _ _ _ _ :

I
I

i i

-~.Ij i

'-

~

I

)

~-l! II...-~-, ~l-l.--

-

-

-

! i
J.I..

_,_

._.__.

1
I I ;.,'.

__

,__

f
.
I
.. ,.; ... I

,

~

.

. -

-

I i
J


,
'; ~ -

'I~
-j -

-

.
~ I ---:---;---

-



i

+.



-



-

-


TI I

-

--

---

I
"'' "-""'

70

j '
l
:

I 1
'

I '

I I

I I

l
I

;

-. I

I ,
I I
[ -~-- . .;. - ... ----

j'
____ ,.- - : - ..

:
.
- - .;... -

, i
i ~
--- --;- -

I
1

I - ---t-.. - ~...-...

60

1

i

l

~

,



I

:

:

l .

-~t

I ~
1-

l --~-i------1I

: I

'

! ~

'

r --- !----...... __. ---

J ----1 J t-.,.._._.L ___.:__ ~ug~..' s0 -

I -

I

'

! i

l I

----- - . , - 1

!

, .

I '



'

! ,_,_, .1~_- -.- _, _ ___ _ _

.

.

!

~ 1= -. - ~ 40 -

,

; 1

!1 --- ---~I----..-----!~-----r. --t.--~-; - ----r

--+-+--1 <( 3o j

+

;
i

t
;

I

I

I

: ---!;---;+---~!---

20 1I-

~

10 -1

II"" l
0

0

24

'
. j

---+I ---- 1

i
r

I

l


I


:
I

--n .

1

I l f

iU

'f'"iii!liiiiii!IIIU

\iI iillliiUIIIIU!ii.,~l

- rI
\

1 I

;l.

I

iiii!U 1:

l

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

-Maximum Cracking --o- Bottom Up Reliability --Maximum Cracking Limit

Urban lnterstate-2-16-12-good-actual.dgp 10/14/2008 12:58 PM

1 of 1

Permanent Deformation: Rutting

0.80

0.70

AC Rutting Design Value = 0.5

l .
~---- -~~- _l -- ~ ..

- - - -----

9U%' Reliaoilit~/

Total Rutting Design Limit= 0.75

0.60 -1- - - - l- .. _ . ------t- - - - - - - ; - - - - - --!----- ~-:- --
I
l

0.50
-1:
-.I:
-a.

cQ)
0.40

-

Cl 1:
E
::I
0::: 0.30

----~--- --: ----- - -- --- --T

l

!

-- ~, - - --- -j

50% Reliability
HMA

0.1 0 1-
0.00 0

I
I ~--~-

.

. i

:

-~~ --------r-- -- --;-~

i

l

:

.

l

l

'

I

- -1;-

T

I
I

sobgrade
I

I

t

! .

- 1 -----oA-~cgr-eg-at_e B_as_e

p

24

48

72

96

120

144

168

192

216

240

264

Pavement Age (month)

Watson, D.E., J.R. Moore, D. Jared, and P. Wu
APPENDIXF PerRoad PAVEMENT DESIGNS

r.
1
,I_
r
._

PerRoad Design - Rural Minor Arterial

-'I of L~;~ye!s
('"~
r~
r .1
r.~

- Seasonal Information----------- -----------

Season Duration (weeks)

[.(~ Summer ,, 8

w[F.:~ii]
110

Mean Air

jss

j?o

Temperature, F

-

-- --- -~~-

- layerl

Le.yer2

Me.terie.l Type
PGGrad~

lAc

3 lAc

3

(643 ]-22 3 1 6~ 3 f-223

Miri Modulus (psi) 50000

50000

Modulus

(psi) .,532850

J61 6747

M~.Modulus (psi)

~000000

400000.0

foi~son's' REitlo.

jo.Js

Jo.Js

MI~-Mex

0;15- 0.4

o.fs- 0.4

Thi6:1<ness Qn)

,, .5

J2

Ve.riE!b ility_j
Pe ffp r[n lilrl C!3 t;r\t~ri_a'

Va ri abi li ty J
i ' PB~Offl'lffn88
.Cnleri_a

,, 2 P Winter
]'12

w Sprin_g

r Spring2
I

Curren! Season
3 ] sum mer

jsg

js6

Le.yer 3 - - -

jAG

3

16431-22 3

j.'O

p- Temperature

Correcllon

''"'-, -Leyer5

3 ]Gran Be.se

]soil

3

50000

5000

3000

.16226~4

Jl 330~

13048

4000000

50000:

40000:.

,]0.35

Jo.4

.: ]0.45

0;15 - 9:4-

'oas - OA5

0.2 - 0.5

14

,js

Yf!!!P.qilit-y

,infinite
,.
Yari~!Jiliiy /
_ Pa.~lwm~n~!l' j :~~tetria ;'

PerRoad Design -Rural Minor Arterial

'

r -

Gena.raTi~JoraWifaicy.D.MetDn -T

-~- - - --

-

-

-

-%Trucks

f-~

Axles Groups (Day j sG~

% Tnick Gr.6wth

%Trucks in Design La(le ~~ % Olredionell O~stribution ~ %

lnpui Load Spectre:
byYahide Twa

"Loading onligurations (Chack AIIIhot Apply}
ITVUVi)J ~ @.ifJ!!<}.. ~~~ wTand~m
~. ~% w-w~%

ClJw steer

Gu rr.ent{Cqnflgumtiorr

~~% jTandem i]

Cu rre nt_Ali:l ~l,.o ad Distribution -

____.. ~ -----

-- ----

AXle
Wt klp ~. A'xfa's
0,2 jo
2'4 jo
::~ B,lO 3.3
1'0~12 3.4
12-14 8.2
14-16 Ja.J
t'&;lB ,10.1 1a;2.ti J10.1
_'f2{) ~2, J11.2
22-?4,11 .2
! ~dtl8116iig!1B

~e
Vv\
kip %AXles.

. 2~-26 19,2

2B-2B ,9.1

F 28-30

~ o~n

B

32,34 Ju

'3~,36 11.2 3!k38 Jo.z
~8-40 Jo.l 4il~42 _jo
42::44 jo 41-1!1.:. jo

4s'4B 10

Axle
Wt.
kip %Axle_~
48-50 jo 50-52 jo
52-54 Jo 5~-56 Jo
56-58 Jo
58--60 jo
so-oz Jo jo 626~
Jo 6~-6.6 6&.68 jo , 6Jl-i!!- Jo 7o~n Jo

Axle
Wt
kip

%~9$ -

7;e-74 Jo

Jn 74~(6

76-;78 ID
F -_ ~8:80, t~Q-82 ' 82=84 jo

B4-8G Jo

86-llB Jo 6~1,~. Jo
9p-9"2 jo ~<,2-':!3.4 jo

~~79:S 'lo

import l:ollfl _Spedre

'I . Save'L'oiii:.l~Spedra

Me-
1M
~i p'

% :Ald~s

96-96. Jo
96-J[)[) jo
F ,JOD-!02 Jo
::~:::
1o~>;-toa o

iP &1,10
-, IQ~ ,,-.
Total

jo
jo
L j100. ..

l 'j_. ~~~l'fh:n~~~

PerRoad Design - Rural Minor Arterial
- - - - - - - - - - - - - -- -

p~i'petual Pave merit Design Results

Criteria

Threshold

Horizontal Str... 100.

Vertical Strain 200.

rnicr...

Percent Below Critical 100. 1 00.

'1r5" Nuo)b.er."!f Pavement Le.y13rs;

Lay~r1

~ay.er2

,,.
. ''f::tll,~Kn ess. li'r:.
i - L.,
I. ..t1.iscra'imei"

.

Layer 3
]A~

~e.y~(4~
'Jf'B' '

Js ' Jr--4- -

CestArle.lysi~

PerRoad Design - Rural Minor Arterial

- S~asonallnformation ---------- - --- -- -- ------- ----------- - - - - - - - , - -- - - -- - - - -- -- ,

See.son

!Pi~ Summer

Dumtiqn (waek~)

P' Spring
Jl2

r Spring2
jo

current-Season
:::J !summer

Mean Air Temperefure, F

w' T~m~~r.alu,e Gorrectien

IVte!eriEifTypa
PGGrade MinMl;ld\lfus ,(psij

Lo){Sr j c __ _

jAc

_:j

16~ 3 f-223

5000 0

Modulus (psQ 137709Q

L!'lyer 2.- ~~
IjAc 3 1643 1-22 :::1 1
'600110
:1 4276 62

50000
'
J4 35132

5000 . rl3304

]16!ll4

Max ~6cjUius (psi) Po i,sson!~ ~ljo~ .Min~,lv1ex

40000-00
jo.Js o.fs- 0.4

4000 000
jo.J5 ..
. OJ!i- OA'

1000QOO . ,0.35 o:l5 - o :~

50000.
, -
jo.4
0;:35 - oAs

4000--0-.,_
joAs
0)2' -- o:s '

Tl1icl<.ness on) J1.5
I .. 'vflrifilillity

Variability j

Vefia~li[%

-,.' Infinite -_.
-l
, V aiiabiiW ' -'

.,

Perrormenc~
Q-iteil~ _

Perlorme~ce
: o ril~ ri a

P~.rf.o.(!ft~tr.El ,._Cii.te}'ia ,

l?f11forlnaric!i ~i!ei'rfl:\.

PerRoad Design - Rural Minor Arterial

j20o0-- f - GenereiTreHicData-------- ------ - ------ - -- - - - ------- --

------------

Tw,ocWayMDT

%Trucks

%Truck~ in Designlane roo-%

lnp u\ Lc~:~d S_pectr~:~

Alde"s Groups /Day 1964

%Truck Growth r~

Di.redione.l Distribution ~ %

by"Vehicle ~Yf1tl

Loading eonn~urll,tions (CheckJ>JI That;l.pply)

~f-'~1~~) j17 %

P Ttmdem
~%

CUrrentAxle.)..oa_d.DistnbUII.;;;-_::==::==- - - -

P T ridem
~%

BJJ;TSteer
~%

-- -- ---------- -

CUrrent Configuration
jTandam ...:1

AXle.
wt
kip .%Axles

AxlE!
INt. kip %Axles

Axle
Wt l<.ip %_Axles

;A.xle
INt.
kip %A.xl.es

Axle WI.
kip %Axles

Q-2 jo

24-25 9.2

48-50 jo

72,74 jo

96C98 jo

2'4.,0

26-28 !3.1

50-52 jo

74-7.6 jo

98c1 QO jo

H jo.8
s-a Jo.8
8-10 ,3.3 iocf2[i4--

~8,30 5.9 30~32 ' 6.8 32-34 . 1.2 3~'36 1.2

52C54 jo
54-56 Jo SG~?B jo 58_,60 jo

.,., F76c78 Jo
?a,ad Jo
82"84 ' 0

J00-1.02 jo
1o z~i. o.!t F
10,4~1 06
101oli Jo

.
.> '

12.-:t4J8.2 14c1s )8.3

36-38. jo.2
38-40 jo.1

60-;62 Jo
62-64 jo

84-81i 0
M~a~ jo

1'08'l10: Jo H Oi-- Jo

F " _1_6~18: ,10.1 f8C20 . 20~22 11.2 22~~: ]11 .2

-40' 42 jo
~2-~.4
. 4~4(; F
41H jo

64-66 jo
~F 6a:::zo o

e_o:go _F
o ~om J
- ~2;9~ _jo

7;ff-l2 ; 0

.. '9~'-95 jo
. -

Tolfil jJ-~,~p
.

C~c9] Chtfn~~s , J

lm,POJI Load Spectra . J

PerRoad Design - Rural Minor Arterial

- ---. . ,. . =,--;--------; ] -_R_e-lia_b_il-itY_.A_. n-

e-".ty-

s-i_s-_-__-

_- _

I[ ~- -----Pe'i1Cirni.AiifJY.$f~-----:--"'~'l
_-_-_-_._-....._..=--_r-_:-_--:_--_---::=-n=-==r-=t::-=:;t~-_------_~.,t"J -:

L

Pelpl:!-tue,IPaliement D e~i gn Result;;

Ci'iterie.

Tnreshqld'

Horizontal Str... 100.

Vertical Strain 200.

PercentBelow Criti~ 100. 100.

. .: NITi.iii~er ot,:l?avement le.ye'rs:
, .~

,M.al~'.ri,~a\..l

1

1-.

'

:rrItli~fn~

~s>:


)

I
ri.

_jk\c
]1 .5..----

"'

't

.:. . ~

--

Leyer 2

~st-A..j.)elys-l..~

1-
,....

PerRoad Design - Rural Principal Arterial

:-#of Leyers
'(~
I ~l
r_1
(0.5_

Seesonellnformation- ----- --- ~-- - ----- - - --- - -~

Season

:~ti Summer w~~-~~~

]1 0 Duration (weeks)

,, 0

P Winter
f12

Mea!) Air

jss

Temperature. F

J70

j50

P' Spring
]12
J65

. r S,pring2 .Current Season

Je

3 Jsummer

j?o

- - Layerl

- teyer2 --~ f Layer 3

Material Type

jAC

::J jAc

3 jAc

3 :::J jGmnBese

il

PG Grad~

f6431223 )643 f-2"23 I .[6-13 f-223.

Min; Modulus (psi) 50000

Modulus

(psi). 1377090

50000 1427662

5oo.o.!i 1435132

S:OOO ...
.,, 330~

'30QO 13048

Ma;.<Modulus (psi) 4000000

4000000

40000.0Q

sa.oo_p;

. 40000

'P<iis~iiri~s Ralio-

,]0.35

jo.Js

Jo.Js

N!i~ - t-;tax l'hiQkness [in)

0.15- 0.4
jts
I V,arfabllity

OA 0;15 '~
12
I YEiriaqil)ty

,0.4

~ joAs

I

-:.~2- 0.5'

~- .
.J..n_._friite

,

P-erfo rmehce
Crlterlli '

Performance Griteria-

PerRoad Design - Rural Principal A1ierial

Generai ,Trafflc Data -~::::::=~=:...::::----

f _ , Two,WeyMDT 11800

%Trucks

r - A:4Jls:Groups/Day )2100

'Yo Truck _Growth

ro/. 'Y.T.ruc~jn-Design ,Lane
Diredioriel Distribution ~ %:

Ltiao;Jing1Co'nflgurotions (CheckAIITbciApply) ---=::::= _.: --=~=============.:====:

rv-% - ~~~~ Pisin.~l~l
':1{..l;1! , ~ r.

. ~~ ~

P"

Tandem

r AA?&JI p- 'Tridem l't

~~ p- s1ear 'Curr~nt COn 1g~r96on

~r-% JTcndem

3

GUr~n t AXIe' L';lrufQislil:iuUcin

~.vI/t ,
Rip r. Axles,

A-.:ta ~ kip r.Axles

.A~I~t
'WI.
~ip

~~ f.xles

!H jo -~r4 r:jo_ _ __ .. t~ jo.3
.. ll-& i'"""o.-=-3-'-'--

24.26 jn
.r::~:~- ~
30'32_

r---- 48.60 ~
60-52
62,-54 jt.4
54'-58 1,.,.,_..,.4_ _ _

- a~, cy j,

3N4 ._jl-5__.,..3- -- 511~58 jo.9

.' 10;1'2 Jr.-i- --

3~~36 js.z

sa.:so jr:-o.8=----

'12:M jJ.6
'.,.ib1 6_. 11"3:-..,.._6_ _ __
~;f( J6.3
1~8,2-0~1- r js.J--~-
z~21jr:-s.s=----

3&<3a Jr:-z.a=--- -

Ja14o jz.8

F 4~42

'

9 7
lf::--1.

-

-

-

42:4~

44~6

6062 jo.7 62-li~ r:-jo.J=----
F 64-66 jo.1
66-liS
68-;0 . 0

,.". . zzoz~ ]6.9

~

~:

J.

.j



'

~

~~8 ]1.7

ni~n jo

''
~ lmpgrt Lo~d Spe,ctra

%Al<les

.%/.l>:les

PerRoad Design- Rural Principal Arterial

~ .:.__: eliabllity Analysis----- - - -- - - - -- - -- - - -

- - ~

- -~

I[._~_:
-

..~-~-~~-.
~

.

-~;-ri?im -~~-~iysii:

-

- - - _..__

-~

.. _~

~JJ

_________ _ __________ __ -----

.

- r>erpetual Pavement Design Results------- - ---

....:._

.......,

Criteria

Thres hold

Horizontal Str... 100.

Vertical Strain 200.

micr...

Perce nt Below Critic~) 100. 1DO .

'li11jbkness'DesignStudio :__:_c___c.,-------.-~----- - - .

- tNumbe'r df f?e.'l{ementLayers: , -
,..

Laye r l

La.y_er2

!a

_,)
.c ~fi~ef!ii-
'.-----'---'--4'-----._-:' l~biii. l""""'-------, . ! /. .
.~ !' [!([nita.

PerRoad Design - Rural Principal Arterial

# ofleyerv :Sa(ls_onal lnformatipn

rz
r J.
rA

.Seoson

@I Summer

)18 Oure.lion (weeks)

r. ~

]as Meon Air
, Temperature; F

IV~
jto
po--

P: Winter
]12
jso

j>1.Spring ]12
J65

r spring2 J~
f't'l

0./(ent.Seoso.n
3 )summer
f'1 Teri)pe_rf!lurEI!
Go:rr~q1on

M \1-IE~fle i .Typa P"G Gmda

Loyer1

jAC

:::J

[643 !-22 3

~- Layer 2- ---

lAc

iJ

[6.13 J-22 3

1-~ye rJ -- ~-

[Ac

_:]

f643 '1-22 i l

- La~e r'4'----
3 !Gren Base

IVtin Modulus (ps~ 50000

50000

50000

5000

;:

3000

Modulus

(psi), : ]532850

MI.\"< Modulus . (ps~ 4000000

161 6747 ,4000000

r162 2684
' 4oooooo

,, 3304
smioo

]15914 <10000 '

Pbisso~t.s-Re"liq Min- .filq)c

joJs
0,15 - 0.4

jo.3s
0.15- 0._4

jo.Js
0.15, : 0.4

:. joA

I' joAs

o:Js-- .'O~'IS:

0:2 - 0.5,

Thitlg1ess - ~~) . .. ]1.5

jz

je

:VmlaliJiity I

I~ Yeriaf:tility

Parform1111ce

P.ertbrm~~nce .

..

Cr)terta

, - y~'~riB .

~1....__.,.-~-

. J12

1:

lll~rill~

. cc~~~J c)i;w~~~ J. I

- 'I~ ~al{~~9.~5 , 11

~-.

} ,.,\i.r-

PerRoad Design- Rural Principal A1ierial

-G:ilrr~ ~IA'<le toad Dlstlibu~

/ixl~ .

Axle

Wt;

Wt;

ki~ ~ -Axles_

k[p

.%Axles

02 jo

H jO

s~',s6-

F
0.3

?4'21i 17.7
26"28 p.a
28-30 jo.3 30-32 Ja.J

~10 ,, '1Q"1__2 ,,

32"34 js.J
3,4.36 js2

12-r 4 jJ.5

36-38 [2.8

-11:'11? jJ.6
i.6:iJJ Js.J !Ja.:2~~F'
.20~.?2 ' 6.9

36-40 ,2.6
F 40:42 ,.
12~4{ 8
44-46 ,1.8

'?.~-24 js.9

46-48 J1.7

~ Tridem
~ 'Yo

r;:;-JJ P' Steer

Current Configum_~on

~~- 24 - 'Y. JTendem ::::J

Axle Wt; kip %Axles

_.A.)( lei
Wt.
kip 'Y. Axle.s.

Axre
Wt
I$!P -'Y.A'<Ies

41Hi0 [t7 5i}52 jt 6 62-54 [1.4
54-56 11.4

7'2-74 jo

9'6-96 jo

:F . F - 74-76 jo
76-7~

~a-io o jo
100~102

76-60 0

102-1 0~

ss-5s jo.s

~0-82' jo

1041Q6 Jo

66-60 jo.6
'6062 jo.7
62-64 jo.J

FF 62cB4
e4:Sf
. 66,ae _

64-GS F ~ ,86-90 0

GIHiB

90r~ jo

69-70 jo

-$2-~~- ' jo

10Sl06 jo
'108-1'10 jo ),lp jo
. - . ~ T;otii t ' j1 o.a~

7D-?2 jo

'9>17~6 jo

.. . I
, Sp.ye Lo'?-d Spetira ;- . -

- , ' ! ,

PerRoad Design - Rural Principal Arterial

Bottom Top

Criteria

Threshold

Horizontal Str... 1DO.

Vertical Strain 200.

99.98 1 DO.

PerRoad Design- Urban Principal Arterial Interstate

- # ofLeysrs Seasonal Information ~- ---- -

- - ---- -------------------~

I r~

Season

RJ1 Summer p ~~~Jij

r 1-' Winter I" Spring

spring2 Curr~n Seoson

'1

('_1

Oure!la n (wesks) 118

r. ~

Meon Alt Temper!'llure. F

[as

,,.,_l rm-- 110

f-112

jso

165

Jo
1;(1

3 )spring
w Tempereture-
v c.drte'cti:on

!.4ye r 1 --~ Ley,er 2-'"-..-

L!'lyar 3'- - ..-

Lt:~y~r5

~ ~~-~e ria,l T.ype

JAc

_:j JAc

3 )Ac

3 :::J ' )Gran Base

)soil

3

RG_-Grade

f763f-28 [543 )-22 3 f6-!3:J-22 3

!\<lin Moduius (ps~ 50000

50000

soobo

5000

-. 3000

Modulus'' (psi) 13S5233

1616747

1622684

,j 13304

J3MB

_Nio:<;Modulus (J:ts.i). - 40.00000
Poisspn'-s R-atio ' Jo.Js

.400.0000 jo.3s

4000000
jo.35

50000
JD.4

40000 .jo.45

Thickne'Ss

OJ5- 'OA
.Cro) _ , jLS

Verleb.i!lty J

''

0.15,- 0.4 12 variability 1 PerloriTJ_anqJ I,
Griter!il:

0.15 - 0:4.'

.0.~ 5 .- 0;~6

Js

. -~ 1.12

V!') ri_Bb11 iiY._ 'I

vnri~ility I:

-r Perl!l-J-(-!'I:ari..;cloe . '

Pel!.orrop~-~

. g~\e rl !i ;. . ~!J!eli.e. :-~-

,i~

..

r

O;l - os 1-

I '<

:'~Prl~e .
V.a;i~llity

- ~~~trG~- 1

'

PerRoad Design- Urban Principal Arterial Interstate

GeneraJ TrefflcDeta - -- - - -
TwoN,IeY,M~T. j125000
_h.\desGroups/Dq.y J861 6

f F % -- --- %Trucks

- -----------------~-----.

% Trucks In Desigr\ Le.n~

' lnf.iu! .l:oc.d'f;>Re ,C!ra

%TruckGrowlh j-4--

Directione/Distributioh -rso--% I:!S-'Ye/lii:le :rYP.e

'L_ol!i_~ in cj Cl;lnflgurii.tl(fns (Che_ckA/1 Thc.tApPJ0 -- - - - ---_:-::_==-=-=-=--~~===~-=-::-::==========:=::;

~ ~I -fP iSfn~ %

r~rl
~

P~ ' Tan% dem

* r'lJ~.FJ'IW';[lD.T3riclem%-

H .- II
.

' I! ~ p Steer

~Cu_rrnf!t-C.onC.gum[on.

ITridem

::J_

c_u'~Fe'nt A;i:la .~.o_iid .~Jslrib_utio n

~P _

Ade

wt >

Wt.

l<jp %.Mas '

kiP.

%~es

Axle
vA
kip %,A.xles.

24-261

4tl'50

72"74

26-28 -

SD--52

74-76

.,.,

28-30.

5.2-54 p.n

7.6,78

.30-32 3 N11

F 5~-5 6
6_6-58

7B80 BOcB2

I :

34~3 -6

&8"60 11.9

~2-tl~

36-36

60-62 jo

38-40

6_2-li4 jo

~Q-4 2

' ~'1-66:

42+f
W4'6-
p.s . 46"~6

66-66
sa,7o
70-7~

PerRoad Design- Urban Principal Arterial Interstate

r=aly,,

- --

F.'erp'etual Pav.:ement Design Results - - - . - -

Criteria

Threshold

Horizontal Str... 100.

Vertical Strain 200.

micr...

Percerit Be l oY'tCrill~l 100. 100.

le.yer 1

L ~yer2

js

' ..

PerRoad Design - Urban Principal Arterial Interstate

ilol~aye, ~
r~
ra rs
"li.

Seasohtll lnforme.tion -

Season

:p;\ Summer

[18 'Dur<tliori (weeks)

Jas .. M.ee.nAi.r
Temperature, F

p~
110
170

Mflterie~llype PGGrage

-==:J Layer 1-

Le.yer2- - -

lAc

il'l lAc

3

!7631223 [643 1-22 3 '"

Min'JV,Iodlllus (f:l_siJ ' 50000,fvl adu luji. (f.isQ [377090

50900
J4mo2

-

- M!\x-Maduh.i ~f. (i:lsi)

4000000

4000000,

P" Winter
jl2
jso

P Spri ng [1 2
jss

I Spri11g 2 Gurrent See..s~m

[o-

' ISpring =:J

)ig

p T~mPe~ture

Correction

- ~yer3
lAc 3 .'[643122 3
'50000

Le.yer 4 -- - - Le.ye r5- - -

3 1Gr6Jl8t!SB

lsoll

3.

5000 ,'

3000

143.5132 4000000

jmo4
~oo oo.

11 5914 ' ~0 000

.Pajs~ o~' s' R61i_o "
Mrn- Mex '

.10.36 OlJ5- 0:4

]0.36 0. 15- tr.4

j o.3~
0.15 - 0.4

joA '
0.35 - .o:~s

joAs o: ~ - 0.5.:

T,h ic~ess, ~fl)

[1.6
Vrui~bill~ 1

....... -

..

. ,;.

':&anc_el '~lwnges

]11
I Variability
Pe~f~~~rf:ce I,
'

lnEhite.

I . r Variabil(ty

:P~rlcifmhnce
-e~l'" ;161;

1-F

PerRoad Design- Urban Principal Arterial Interstate

---. - - , Gener~:~~;:~:~~ --F~-~~~--

~% --- %Trucks 112 ---:;, Trucks in Design Lone

[ Mas Grciups I Day js616

%Truck Growth r~

rso- Direc1iona.l Distribution

%

lnP.ut Load Spec1t: l l
l:iyYehida Type~J

Il"'"'""f'~%"' i'"""@';'r~~% dom ~~ ~ ~~Tr% idem .

Curren! Configuration

-~ ~% ln"JJP Steer

jTridem

ICt.irrent Alde .Lo.ad'Dislljbution --

1

Alde
~. ~Axles

Axle

~

%Axles

Axle

Axle

Ax[e.

~ %Aldes

.'m %A-aes

~~

o,z 10
2:..1 lo
. H 1o
~,o j3s

8-1.0 jJ.9

12-1'4F 10-12 .J4

,14'16 2

l:t
<,

f2 JIHB

;~
._.., '-
I

Jll!-20 '16.9
2.w~2 -15.9
2H~ _js.s

Ca'lli:et~arjges J

24-2S ]7.6
p.s 26-20
2!fJO 17.9
F ~Oo-~.2
32:.311
34-'3!) 11.9
36-"90 js.s
F 3!h40
4.0-A2 9
F 42'-'14
44~46 ,,_g
46:.-,!!B

F 48-50
50-52
52,54 11.9
5456 J2
56-58' F 58'60 . 1.9
6~6? lo 62-64 Jo
jo 6"4-66
66--61l lo
F 6870
'7M2

' lmpor:tloa.dSpectra

72~74; Ja

Jo .96-96

7~,76' lo
. .,F75:79. Jo
78~ilo Jo

F 98-100 jo
.tOO]!i"2 .
102.1.0'1 0
104-101; jo

'
.

62' 64 0
~ . ~ ~

i ostQ'a Jo

8186 . 0
F .~~;a,( jo
..9a'a9!rM~E. 0

1ii"8:1.io jo
. . .. 110;.. .;jo
~ ~,T_Ijltal l_19'0

-I!.
I'
r ~ ~~

1



~z~9 ~: jo

'



; ; . ~

9'1;96. .

.

jo
~

. '



r ,
"'-

....~ .....

.. Sav~ Loai!'sl~CI{~--I . ~

I)P.-~Pt.~r.g~ I.

' .

:r - d ~~

PerRoad Design - Urban Principal Arterial Interstate

~ =io/Anwy,,, __~~_jc;:_Pe~.m:..~'Cj

.perpetual Pav.ement t?esign Results ---- --------~....;-,.,--.........~----~---,

Cri teria

Threshold

Horizontal Str... 100.

Vertical Strain 200.

micr...

Percent Belbw Crlti~I'
100. 100.

- ifhickhe!ss Qesign Sl~,Jdio ---
f ., 1!')1\Jrhl:l~r of Pavement layers:

L't,<

Layer 1

Le.yer2