Geochemistry and economic potential of pegmatites in the Thomaston-Barnesville District, Georgia

GEOCHEMISTRY AND ECONOMIC POTENTIAL OF PEGMATITES IN THE THOMASTON-BARNESVILLE
DISTRICT, GEORGIA
Mark D. Cocker
Georgia Department of Natural Resources Environmental Protection Division Georgia Geologic Survey
GEOLOGIC REPORT 7

GEOCHEMISTRY AND ECONOMIC POTENTIAL OF PEGMATITES IN THE THOMASTONBARNESVILLE DISTRICT, GEORGIA
Mark D. Cocker
Georgia Department of Natural Resources Joe D. Tanner, Commissioner
Environmental Protection Division Harold F. Reheis, Director Georgia Geologic Survey
William H. McLemore, State Geologist
Atlanta 1992
Geologic Report 7

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS......................................................................................................................................................iv

ABSTRACf................................................................................................................................................................................. 1 Acknowledgements................................................................................................................................................................... 1

INTRODUCTION...................................................................................................................................................................... 1

Purpose of investigation............................................................................................................................................ 1

GRANITIC PEGMATITES ...................................................................................................................................................... 2

Composition and classification................................................................................................................................. 2

Pegmatite provinces, belts and districts, fields and groups................................................................................. 2

THE THOMASTON-BARNESVILLE DISTRICf.................................................................................................................. 2

Past mining activity.................................................................................................................................................... 5

Location and size......................................................................................................................................................... 5

Terrain and exposure.................................................................................................................................................. 6

Vegetation.................................................................................................................................................................... 6

Previous work ............................................................................................................................................................. 6

SAMPLING AND ANALYTICAL PROCEDURES.............................................................................................................. 6

Locations of mines, prospects and samples........................................................................................................... 6

Sampling techniques................................................................................................................................................... 7

Sample analysis........................................................................................................................................................... 7

GENERAL GEOLOGIC SETTING.......................................................................................................................................... 7

The Pine Mountain belt ............................................................................................................................................. 7

The Uchee belt ............................................................................................................................................................ 11

The Inner Piedmont .................................................................................................................................................. 11

The Piedmont ............................................................................................................................................................. 11

The Berner Mafic Complex ...................................................................................................................................... 11

PEGMATITES OF THE THOMASTON-BARNESVILLE DISTRICT................................................................................ 12

Physical characteristics ............................................................................................................................................. 12

Mineralogy ................................................................................................................................................................. 12

Internal zoning of the pegmatites ........................................................................................................................... 12

Geochronology........................................................................................................................................................... 18

PEGMATITE GEOCHEMISTRY ................ ............................................................................................................................ 18

Pegmatite fractionation and trace element geochemistry ................................................................................... 18

Muscovite geochemistry .......................................................................................................................................... 20

Discussion of pegmatitic muscovite geochemical zoning ................................................................................... 38

Feldspar geochemistry ............................................................................................................................................. 38

GENESIS OF THE THOMASTON-BARNESVILLE PEGMATITES..................... ............................................................ 38

Physical conditions ................................................................................................................................................... 38

Source of the pegmatites .......................................................................................................................................... 40

ECONOMIC POTENTIAL OF THE THOMASTON-BARNESVILLE PEGMATITE DISTRICf ................................. 40

Rare metals ................................................................................................................................................................. 40

Mica ............................................................................................................................................................................. 41

Feldspar ....................................................................................................................................................................... 41

SUMMARY ............................................................................................................................................................................... 41

REFERENCES CITED .............................................................................................................................................................. 42

APPENDICES ........................................................................................................................................................................... 45

I.

Locations of pegmatite mines, prospects and samples .......................................................................... 47

II.

Muscovite geochemistry ............................................................................................................................ 57

III. Feldspar geochemistry ............................................................................................................................... 69

IV. Analytical parameters ................................................................................................................................ 74

V.

Attitudes of pegmatites .............................................................................................................................. 76

VI. Attitudes and lithologies of country rocks............................................................................................... 77

Ill

Figure 1. Figure 2. Figure3. Figure 4. Figure 5. Figure 6. Figure7. Figure 8. Figure 9.
Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure30. Figure 31. Figure 32. Figure 33.

LIST OF ILLUSTRATIONS
Page
Pegmatite belts and districts in Georgia.................................................................................................. 3 Pegmatite fields within the Thomaston-Barnesville district............................................................... 4 Sample location map................................................................................................................................. 8 Generalized geologic map of the Thomaston-Barnesville district...................................................... 9 Cross-section through the Thomaston-Barnesville district............................................... ................... 10 Pegmatite trend map of the Thomaston-Barnesville district.............................................................. 13 Primary forms of pegmatites in the Thomaston- Barnesville district ............................................... 14 Regional mineralogical zoning in the Thomaston- Barnesville district.. .......................................... 15 Generalized zoning in muscovite-bearing pegmatites. A) Simple zoned pegmatites. B) Complex zoned pegmatites................................................................................................................. 16 Types of mica deposits within the Thomaston-Barnesville district................................................... 17 Pegmatite districts and granitic plutons in Georgia ........................................................................... 19 Scatter plot ofF versus Rb/K in pegmatitic muscovite....................................................................... 21 Scatter plot of Nb versus Rb/K in pegmatitic muscovite .................................................................. 21 Scatter plot of Be versus Rb/K in pegmatitic muscovite ................................................................... 23 Scatter plot of Li versus Rb/K in pegmatitic muscovite..................................................................... 23
Scatter plot of Rb versus K20 in muscovite.......................................................................................... 24
Scatter plot of Ta versus Rb/K in muscovite............. ........................................................................... 24 Scatter plot of Zn versus Rb/K in muscovite....................................................................................... 25 Scatter plot of Ba versus Rb/K in pegmatitic muscovite..................................................................... 25 Scatter plot of V versus Rb/K in pegmatitic muscovite...................................................................... 26 Scatter plot of log K/Rb versus log Li in pegmatitic muscovite ................................. ...................... 26 Map of the distribution ofF in muscovite ............................................................................................ 27 Map of the distribution of Be in muscovite .......................................................................................... 28 Map of the distribution of Li in muscovite .......................................................................................... 29 Map of the distribution of Nb in muscovite ......................................................................................... 30 Map of the distribution of Rb in muscovite .......................................................................................... 31 Map of the distribution of Ta in muscovite .......................................................................................... 32 Map of the distribution of Zn in muscovite ..................................................... ... .......................... ....... 33 Map of the distribution of Rb/K20 in muscovite ............................................................................... 34 Map of the distribution of Ba in muscovite .......................................................................................... 35 Map of the distribution of Ba/Rb in muscovite ................................................................................... 36 Map of the distribution of V in muscovite ............................................................................................ 37 Relation of pegmatites to metamorphic facies series ........................................................................... 39

IV

GEOLOGY AND ECONOMIC POTENTIAL OF PEGMATITES IN THE THOMASTON-BARNESVILLE
DISTRICT, GEORGIA
by
Mark D. Cocker

ABSTRACT
The Thomaston-Barnesville district is one of twelve presently recognized pegmatite districts in Georgia which form part of the Appalachian pegmatite province. The pegmatites of the Thomaston-Barnesville district are predominantly mica (muscovite)- rich. During World War II, this district was the largest producer ofsheet and punch mica in the southeastern Piedmont of the United States. No mica has been mined in the Thomaston-Barnesville district for approximately 30 years. The current investigation evaluates this district's potential for rare metals and to a lesser extent its potential for mica and feldspar.
The present evaluation is based on minor and trace element geochemistry of muscovite collected from the Thomaston-Barnesville district's pegmatites. Over a period of nearly 50 years since the latest investigations in this district, cultural activities, natural reforestation, and rapid degradation of mine exposures left a poor physical record of the formerly known pegmatites. The resistance of muscovite to weathering combined with the presence of indicator elements in the muscovite for rare metals make muscovite an ideal sampling medium in this district.
Geochemical results show that anomalous indicator elements(Be,F,Ga,Li,Nb,Sn,Rb, Ta,andZn)inmuscovite coincide with the recorded occurrences of rare-metal bearing pegmatites. Anomalous indicator elements in muscovite helped identify other pegmatites which may contain raremetal bearing minerals. Most of the pegmatites with anomalous indicator elements are concentrated in the central part of theThomaston-Barnesvilledistrictalthough some pegmatites in other parts of this district also appear to have potential for containing rare-metal bearing minerals.
The potential for additional undeveloped sheet and punch muscovite deposits is good in parts of the district along the continuation of apparent structural trends; however, the difficulty of finding these relatively small targets may preclude additional work. Further development of some of the larger, partially mined pegmatites at depth or along strike and processing of mine dump material for scrap mica

may be economically feasible for small operations. A few pegmatites in the Thomaston-Barnesville district contain unweathered feldspar, but most near-surface, pegmatitic feldspar is weathered to clay. The potential ofthis district for sodic and potassic feldspar is low.
ACKNOWLEDGEMENTS
The author gratefully acknowledges the permission and interest of the numerous property owners to inspect and sample the old pegmatite workings. The author wishes to thank the reviewers of this manuscript for their thoughtful insights and efforts.
INTRODUCTION
PURPOSE OF INVESTIGATION
The current investigation evaluates the pegmatites in the Thomaston-Barnesville district for their rare- metal potential. Because the Thomaston-Barnesville district is the largest pegmatite district in Georgia, it was regarded as having a better than average potential for containing raremetal bearing pegmatites. Rare metals which are commonly concentrated in pegmatites include beryllium, cesium, gallium, germanium, lithium, niobium, rubidium, tantalum, thorium, uranium, and zirconium. Uses for many of these metals has increased significantly since the last major pegmatite mining in Georgia.
Strategic demand and high prices encouraged the mining of pegmatites in Georgia for feldspar, sheet mica and punch mica, particularly during World War I and World War II. During World War II, mica production in the Georgia Piedmont accounted for 41 percent (over 146,000 lbs.) ofthe mica produced in the southeastern Piedmont (Jahns and others, 1952). The largest portion of this mica production was from the Thomaston-Barnesville district. Investigations prior to 1950 concentrated on the mica content and not the potential for rare metals in these pegmatites.

1

GRANITIC PEGMATITES
COMPOSITION AND CLASSIFICATION
Pegmatites of the Thomaston-Barnesville district are generally granitic in composition. Granitic pegmatites are coarse-grained, lensoidal, dike-like intrusions generally composed of various proportions of quartz, mica (generally muscovite), and potassic or sadie feldspar. Accessory minerals such as tourmaline, garnet, and beryl may also be present Granitic pegmatites are classified on the basis of geological-petrogenetic criteria developed by Ginsburg and others (1979) and recently introduced into North America by Cerny (1982a). The four basic types of granitic pegmatites are: 1) miarolitic pegmatites, 2) rare-element pegmatites, 3) mica-bearing pegmatites, and 4) maximal depth pegmatites (Cerny, 1982a). Brief descriptions of each type given below are based on Cerny (1982a).
Miarolitic pegmatites occur as pods in the upper parts of epizonal granite intrusions that are emplaced into low-grade metamorphic country rocks. These pegmatites are characterized by crystal-lined cavities containing such minerals as quartz, feldspar, fluorite, beryl, tourmaline and topaz. These cavities are the sources of many museum quality specimens and gemstones such as aquamarine (beryl), tourmaline and topaz.
Rare-elementpegmatites generally occur in cordieriteamphibolite facies metamorphic rocks peripheral to differentiated allochthonous granites. Thesepegmatites are formed at pressures equivalent to intermediate depths (3.5-7 km). These pegmatites are enriched in one or more of the following elements: lithium, cesium, rubidium, tantalum, tin, and niobium. In addition to quartz, sadie and potassic feldspar, lepidolite, beryl, cassiterite and tantalite may be present.
Mica-bearingpegmatites occur in almandine-amphibolite facies metamorphic rocks and are formed at pressures equivalent to depths of7 to 11 kilometers. Typical mineralogy includes quartz, muscovite, and sadie and potassic feldspar. Additional minerals which may be present include biotite, tourmaline, beryl and garnet. Although pegmatites of this class are primarily important for their mica conteui, some like the Cochran mine in north Georgia and the giant rare-element bearing Greenbushes pegmatite in Australia (Partington, 1990) may be important sources ofrare-element bearing minerals. The source intrusions for mica-bearing pegmatites are commonly not apparent. The genesis of mica-bearing pegmatites may be due to anatexis or by separation from an anatectic, more or less autochthonous granite (Cerny, 1982a).
Maximal depth pegmatites occur in upper amphiboliteto granulite-facies terranes, and commonly grade into migmatites. Maximal depth pegmatites are believed to form at pressures equivalent to depths greater than 11 kilometers (Cerny, 1982a). These pegmatites consist mainly of sadie

and potassic feldspar with lesser amounts of quartz and minor amounts of muscovite and biotite. The pegmatites of this class may be barren, allanite plus monazite-bearing or ceramic (feldspar-rich).
In the southeastern United States, the most abundant pegmatites are the mica-bearing and the maximal depth types. These pegrnatites have been principally mined for mica or feldspar. Several groups or districts of rare-element bearing pegmatites occur in the southeastern United States. These have been important producers of lithium (King's Mountain district, North Carolina), beryllium (Troup County district, Georgia) (Furcron and Chancey, 1954: Furcron, 1959), and tin and tantalum (Rockford district, Alabama) (Foard and Cook, 1989). Miarolitic pegmatites are currently unknown in the southeastern United States.
PEGMATITE PROVINCES, BELTS, DISTRICTS, FIELDS AND GROUPS
Granitic pegmatites occur in spatially and/or genetically definable groups. Such distributions have been defined by Ginsburg and others (1979) and Cerny (1982a). The largest defined entity is a pegmatite province which includes the entire group of pegmatite fields or belts within a single metallogenic province. A pegmatite belt consists ofpegmatite fields or districts which are related to each other by a large scale linear geologic structure and occur in a common structural position and geological environment. A pegmatite district contains several associated pegmatite fields, which are separated from other pegmatite fields either territorially or geologically. A pegmatite field is an area containing pegmatites which include a single formation type with a common geological-structural environment, age and igneous source. The smallest definable occurrence ofpegmatites is a pegmatite group defined in a similar manner to a pegmatite field except that it is a spatially distinct part of a pegmatite field (Ginsburg and others, 1979; Cerny, 1982a). Isolated pegmatites may only appear to be isolated because of the lack of known additional occurrences in the area.
THE THOMASTON-BARNESVILLE DISTRICT
The Thomaston-Barnesville district is one of twelve pegmatite districts presently recognized in Georgia (Cocker, 1990). These pegmatite districts are concentrated in two distinct belts (Figure 1): the Blue Ridge belt and the Piedmont belt, which form part of the southernmost segment of the Appalachian pegmatite province (Jahns and others, 1952).
The Thomaston-Barnesville district, as referred to in this report, is principally that district of the same name as described by Furcron and Teague (1943) and by Heinrich and others (1953). This district was defined by those authors principally on the basis of mining or prospecting of the

2

GRIFFIN

KILOMETBRB

0

50

I Fl F3 i

0

XILBS

50

IE"3E3!

EXPLANATION
~ PEGMATITE DISTRICT

A THOMASTON-BARNESVILLE
B TROUP
c JASPER
D PUTNAM E CRAWFORD-JONES-BALD~N F CHEROKEE-PICKENS

G CARROLL-PAULDING H HARTWELL I RABUN J LUMPKIN-UNION-TOWNS K HABERSHAM L OCONEE

Figure 1. Pegmatite belts and districts in Georgia. The Thomaston-Barnesville district lies within the Piedmont pegmatite belt. (Modified from Cocker, 1992).

3

/ ~ ...-. ::. ..
LIGHTHOUSE FIELD

. . . ..
( .: . ~. " i
~UNT FIELD


CONCORD FIELD
LY

01

INDIAN GRAVE FIELD

~

(_,/

Thomasto:!J

. ~
.(.;;.',1v.,



. ..





YATESVILLE FIELD








'
















... .. ; ~







~ ~~MANVILLE FIELD

LAZER CREEK FIELD

0:/




-


.

~Fo~

FIELD


FIELD

I

e

SCALE

~

0. 5. 1.0
KILOMETERS

Figure 2. Pegmatite fields within the Thomaston-Barnesville district. Pegmatites in the two largest fields - Waymanville and Yatesville yielded most ofthe known mica production. The cities - Forsyth, Thomaston and Barnesville are included as geographical references. Figures 3 and 4 provide more geographical references.

muscovite-bearing pegmatites within Monroe, Lamar and Upson counties. The present study extends the district to include nearby muscovite-bearing pegmatites which have similar physical and compositional characteristics, and are in close spatial proximity to those pegmat.ites which have previously been included in the district.
The Thomaston-Barnesville district can be divided into a number of pegmatite fields based on the spatial distributions of the currently known pegmatites. These fields are outlined on Figure 2. The majority of known pegmatites occur in a broad band that extends from a point south of Thomaston northeast through Yatesville (yVaymanville and Yatesville fields). The Indian Grave, Concord, Lighthouse, Blount, Juliette, Russellville, and Lazer Creek pegmatite fields appear to be geographically isolated from each other. The Lazer Creek field may be an extension of the Waymanville field.
PAST MINING ACTIVITY
Past mining activity within the Thomaston-Barnesville district focussed on high-quality mica. All of the mica that was mined in the Thomaston-Barnesville district apparently was muscovite. The term mica includes a number of distinctly different mineral species; however, muscovite is the most important species for its physical properties. The term "mica" is retained in this publication in the circumstances in which muscovite is referenced as mica in the publications cited.
Mica is important for its physical properties. Mica is graded by: size, color, clearness, uniform perfect cleavage, flexibility, electric power factor, and freedom from intergrowths with other minerals and from clays, spots and stains (yVhitlatch and others, 1962). Sheet and punch mica are large, principally defect-free muscovite crystals or parts of large muscovite crystals found only in pegmatites. Sheet and punch mica are used for a variety ofpurposes, including: electrical insulation and specialty window panes. Good quality sheet and punch mica command high prices because of their rarity. Scrap, flake and ground mica are derived from the smallerand commonly defect-ridden micas and are more abundant than the sheet and punch mica. Dry ground mica is used in concrete, stucco, backing for asphalt, roofing, dusting powder for rubber tires, fireproofing material, lubricants, and in molded insulation (yVhitlatch and others, 1962). Jahns and Lancaster (1950) provide a detailed study of commercial sheet muscovite properties.
During World Wars I and II, the restriction of strategic sheet illld punch mica supplies caused an increase in demand and price. Higher, subsidized prices encouraged prospecting and mining of mica-bearing pegmatites within Georgia. Mica production in Georgia was initially centered in the northern part of the Blue Ridge pegmatite belt. Until about 1918, most of the mica production in Georgia was from hard-

rock mines in the Lumpkin-Union-Towns and the Cherokee-Pickens districts. Because of dwindling reserves in the Blue Ridge, the discovery of rich, mica-bearing pegmatites in the Piedmont, combined with the ease and low-cost of saprolite versus hard-rock mining, the bulk of mica production shifted to the Thomaston-Barnesville and Hartwell districts in the Piedmont pegmatite belt.
Systematic mining in the Thomaston-Barnesville district began about 1916 with the most extensive mining confined to the periods, 1917-24 and 1941-45 (Heinrich and others, 1953). During the period 1917-24, output from the Thomaston-Barnesville district is estimated at several hundred thousand pounds of trimmed mica (Heinrich and others,1953). During World War II, the Thomaston-Barnesville district was the leading producer of sheet and punch mica in the southeastern Piedmont of the United States with 114,165 pounds or 32 percent of the total production (Jahns and others, 1952). Sixty-two percent of this production came from 4 mines: Adams, Battles, Earley Vaughn and Mitchell Creek (Heinrich and others, 1953). Although published, comprehensive data is incomplete following World War II, production ofsheet mica apparently continued in a few of the larger mines at a decreased level into the early 1960's when price subsidies were discontinued (yVhitlatch and others, 1962). Yearly production of sheet mica in Georgia ranged from 9,000 to 17,000 lbs./year during this period (Cocker, 1992). Several of the mines described by Heinrich and others (1953) have been significantly enlarged in the time between World War II and the present investigation.
Early, underground mining in this district involved selective removal of mica. After World War II, mining concentrated on the larger pegmatite bodies. Open-pit mining of the larger pegmatites probably involved the used of steam shovels, bulldozers and backhoes. Most mining activity was confined to the upper, weathered portion of a deposit (the upper 13 to 20 meters - 40 to 60 feet). The mica was trimmed by hand at the mine site or in the nearby towns of Thomaston, Barnesville, Yatesville, Culloden, and Forsyth.
High quality sheet mica of the type mined here in the past still commands premium prices. Within the United States, which imports nearly all of its sheet mica, no major source of sheet mica is being mined. In 1988, the United States imported approximately $2 million worth of sheet mica (Davis, 1988). The United States also produces and consumes considerable amounts of scrap, flake and ground mica. In 1988, the United States producedabout$23 million worth of scrap, flake and ground mica and imported about $5.5 million dollars worth of scrap, flake and ground mica (Davis, 1988).
LOCATION AND SIZE
The Thomaston-Barnesville district is located approximate!y halfway between Macon and Griffin (Figure 1). Most

5

of the pegmatites considered to be part of this district are located within the counties of Monroe, Upson and Lamar, but mica-rich pegmatites also occur in Pike, Talbot, Jasper and Butts Counties. The total area of this district is approximately 2000 square kilometers.
TERRAIN AND EXPOSURE
The terrain is generally gently rolling to flat with some of the major drainages cutting deeply into the more gentler terrain. Elevations range from 100 to 250 meters above sea level. The western side of the district is bounded by the elongate ridges of Pine Mountain. The gentle terrain is controlled mainly by deep saprolitization. Natural exposures are most common along deep drainages or hill tops. Road cuts locally expose bedrock. Exposures of pegmatites are rare. Most pegmatites were apparently discovered by farmers when they plowed up chunks of weathering-resistant mica.
VEGETATION
The vegetation of the region is governed principally by land-use. Much of the flat terrain is in pasture. The gently rolling terrain may also be in pasture, but is more commonly forested. Vast tracts of land have been clear-cut and replanted with pines one or more times. Recently reforested (5 to 15 years) land contains thick underbrush and is extremely difficult to traverse. Many previously farmed tracts have been abandoned and are now overgrown with climax forest flora (oaks, hickory, sweetgum).
Land-use requirements in this district commonly resulted in the filling-in or bulldozing of open-pits, shafts and mine dumps. Combined with rapid revegetation, many old mines and prospect pits have literally disappeared. Some of these former mines may be detectable by the presence of muscovite concentrated on the land surface.
PREVIOUS WORK
Galpin's (1915) study appears to be the first to locate and describe numerous feldspar and mica pegmatites as well as aplite dikes. Most of these descriptions and locations are generalized, and some of the described locations were difficult to verify. Because of the lack of prospecting activity prior to Galpin's investigations, many pegmatites had not been discovered. Smith (1931-1933) located and briefly described a significantly larger number of mica-bearing pegmatites that were discovered and developed during World War I. Smith's field notes are keyed numerically to pre1920's soil maps. Furcron and Teague (1943) published many of Smith's descriptions along with their descriptions of mica-bearing pegmatites that were discovered and developed during the initial stages of World War II. Furcron and

Teague (1943) published the first maps which show locations of individual pegmatite mines in Georgia.
Subsequent investigations by the United States Geological Survey (Jahns and others, 1952; Heinrich and others, 1953) and the United States Bureau of Mines (Beck, 1948) during World War II coincided with the extensive prospecting and mining of mica-bearing pegmatites throughout the southeastern Piedmont. Many of the locations and descriptions in Heinrich and others (1953) are based on Furcron and Teague (1943) and ultimately Smith (1931-1933). The studies by Jahns and others (1952) and Heinrich and others (1953) brought a wealth of data from other pegmatite districts in the United States and an expanded understanding of pegmatites. These earlier investigations provide critical information on the mineralogy, internal zoning and structure of the pegmatites in the southeastern Piedmont Much of this information was nearly impossible to verify or elaborate on because of the poor physical condition of the olderpegmatite mines and outcrops. Physical information on the pegmatites in this district which are contained in this report are principally based on descriptions obtained during the earlier studies.
The geologic setting of the district was poorly known at the time of the earlier studies. Subsequent investigations by Clarke (1952), Grant (1967) and Smith and others (1969), and more recently, by Schamel and others (1980), Higgins and others (1988), Hooper (1986) and Stieve(1984) contributed to an increased understanding of the lithologies and major structures in and adjacent to the district. Despite these efforts, the basic geologic framework within the ThomastonBarnesville district remains poorly known. These later geologic contributions reflect the lack of recent interest in pegmatites and a lack of knowledge of the potential that the pegmatites' geology and geochemistry can contribute to the understanding of the regional geology.
SAMPLING AND ANALYTICAL PROCEDURES
LOCATIONS OF MINES, PROSPECTS AND SAMPLES
As previously described, the Thomaston-Barnesville district covers a large area and includes numerous mines and prospects which have been documented by Smith (19311933), Furcron and Teague (1943), Beck (1948), Heinrich and others (1953), Koch and others (1984 and 1987). It was difficult to find the mines and prospects located by the above authors due in part to the lack of map coverage or the relatively poor quality of the maps available at that time. Also, the occasional erroneous transcription of mine locations (Furcron and Teague, 1943; Beck, 1948; Heinrich and others, 1953; Koch and others, 1984 and 1987) initially described by Smith (1931-1933) was perpetuated by later

6

authors. Text descriptions of the locations occasionally did not match the map locations. In addition, subsequent human activity or natural reforestation obliterated or obscured the former mining activity.
Because one of the major goals ofthe present investigation is the evaluation of this district's pegmatites, the inspection and sampling of the known pegmatites required their location in the field. This investigation succeeded in finding most of these mines and prospects. Pegmatites, which belong to this district, are located on nineteen United States Geological Survey 7.5 minute quadrangle sheets. These 7.5 minute quadrangle maps (1:24000 scale) show the most accurate locations of these mines, prospects and sample points and are on file at the Georgia Geologic Survey. The locations of these mines, prospects and sample points are also given in Appendix I as UTM coordinates (in meters). The accuracy of most of the points actually located in this investigation in UTM coordinates is plus or minus 10 to 50 meters (about 30 to 150 feet). The locations of those mines and prospects which could not be found in the field during the present study are based on the descriptions by the previous authors, but the accuracy of these locations is uncertain. The mine and sample point locations were compiled from the 7.5 minutequadranglemapsontofour 1:100000 scale map sheets (Thomaston, Griffin, Milledgeville, and Macon) which are also on file at the Georgia Geologic Survey. A single sample location map was compiled from these four maps and reduced for this publication (Figure 3).
SAMPLING TECHNIQUES
The southeastern Piedmont in Georgia presents a difficult sampling situation. Prolonged and intensive subtropical to tropical weathering since the Late Cretaceous, has altered much of the near surface rock to saprolite. Hard bedrock exposures are locally abundant, but are generally rare. Most of the pegmatites within this district contain quartz, muscovite and a potassic and/or sadie feldspar. Quartz and muscovite are commonly the only minerals at or near the surface which have resisted the chemical weathering. The trace element geochemistry of muscovite and feldspar is useful in identifying pegmatites which may contain rare-metal bearing minerals. Muscovite concentrates and feldspar concentrates (where present) were collected.
Mineral concentrates were collected randomly at a dump, exposure or outcrop in an attempt to achieve an average or representative sample of the entire pegmatite. This sampling procedure aLtempted to minimize the effects of mineralogical and chemical zoning within each pegmatite. The lack of exposed workings in nearly all of the pegmatites and the apparent mixing of dump material during and after mining necessitated this type of sampling procedure. Any regional comparisons of pegmatite geochemistry should be based on a representative sample from each

pegmatite. In a few instances, the scarcity of pegmatitic material restricted the diversity of samples which were collected.
SAMPLE ANALYSIS
Samples were analyzed by two different geochemical labs over the duration of this project Twelve samples, which were collected during the initial stages of this investigation were analyzed by Skyline Labs in Wheatridge, Colorado. The remainder of the samples were analyzed by BondarClegg, Inc. in North Vancouver, B.C. and Ottawa, Ontario. Two duplicates of the samples analyzed by Skyline Labs were also analyzed by Bondar-Clegg. The results were comparable. Skyline Labs used inductively coupled plasma spectroscopy to analyze the submitted samples. BondarClegg used inductively coupled plasma spectroscopy, direct coupled plasma spectroscopy, atomic absorption spectrometry, gravimetric analysis, x-ray fluorescence, and specific ion analysis to analyze the submitted samples. The muscovite and feldspar analyses are presented in Appendix II and III respectively. Specific methods, extraction techniques, and lower detection limits for each element are given in Appendix IV. Minor changes in the lower detection limits for some elements by Bondar-Clegg during thecourseofthis investigation did not affect the interpretation of the results because of the emphasis on high geochemical concentrations.
GENERAL GEOLOGIC SETTING
THE PINE MOUNTAIN BELT
The Thomaston-Barnesville district lies principally within the eastern end of the Pine Mountain belt (Figure 4). Muscovite-bearing pegmatites of this district also occur outside of the Pine Mountain belt to the north andeastofthe Towaliga and Box Ankle faults (Figure 4).
Rocks in the eastern end of the Pine Mountain belt are mainly Middle Proterozoic orthogneisses of the Wacoochee Complex and younger, metasedimentary rocks (Schamel and others, 1980). The most widespread lithology of the Wacoochee Complex is a strongly foliated granitic gneiss called the Woodland Gneiss (Hewett and Crickmay, 1937; Rankin and others, 1989). Orthogneiss which contain biotite, garnet and prominent hypersthene in the central part of the Thomaston-Barnesville district is known as the Jeff Davis Granite. A 1,051 MaRb-SrisochronfortheWoodland Gneiss (Rankin and others, 1989) indicates a Grenville age for the metamorphism of the orthogneiss. Charnockitic rocks indicate that the metamorphic grade was granulite facies.
Late Proterozoic orearly Paleozoic age metasedimentary clastic rocks of the Pine Mountain Series overlie the

7

351-12

351-11

351-13

m=u~ ~ -m=l~ - - -- - - -- --1A"9-IJ 1(9- 6

149-H 9-1

I 1A91S
)AI- 16,

lC99

,I 349-22 349-5l 1n-u

1 - - 349-2~

)A!I- 3 349-1

~!:-} J<t!u ],,:t~

34-a:l I 3'9~20

148-

349-1 e 349-Z
379-12

--- - m:r: 351-14 ----,51--1----....

.m:im:u _,.m:n 4 m-2m2:~~m35-1u-A

~~H ~1-10 lSlU

!51-5

)51-19' 1lH51-- 2210,

.~ e
3512?

l>lU
151-7

m=~~ ~m=~
g JU - 10

H12"4' ;11 351-U

l5!-ZS

351-26

376-7 376-8 376-9 376-10 376-11

376-2 .. 376-1
376-3 376-4 376-5 376-6

.376-12 376-13

379-ll

379-14

a ~8-Z m:~ . ll(-z 5
37. .
0J lil!-~9-Zr ~=, 378-6
3787
.3 ~ IIARNESYILLE

378-l .m:t~
378-4.

3711

79-5 h9-6

319-17 }79-18
379-1~

0

>7H7

a e3ao-7

379-9 179-10

)1;-25

380,;



)80-11 80-12

379-3179-11 -)19 - 22 . Z3! '9-26

338800--113

e380-10 8

e

~1-7

~1-5
Hl:l

- ' l&l-1 lHatl:-1~

Alat-4

~1-JZ 38110 341-U

e

381-13.

Q]

'39-35 439-36

PUE CO.

LAllA I CO.

oa-' 4011-7 ... 4081

uPs~ co.

of-to

o;- tt 4~0!91--2U0

&08-2

4081
:g.,:u \ :z;~ m:u .m:~ ~m:u 439-30 40lH
m:n ~ ~. 408-5

409-11
:g:IS 40912'-.. A 16

m:~: (m)=I-~5r5 J!:~- ~::;:jji~i,ft:Jn'"-o' -~m1=0~-2~ 3l:ff-n-"-.

. m:i 0

m- 379-2 ' 179-23)7!2J l7Nl

.09-25

-.;-,o,:~~ 409-26
<0490-9z370 L- ot

3
e 41o- 2

___. . .

0 44110~3~1

l:U 3804- )80-2 380-3

411-1 411-Z Ul-3 e411- "' 441111--56 411-7
a

C0

4091

9

6 409 -36 :g9- 5


0

0

u>u

.

4

41100--4l 411-98

411-11 e4ll-l8

ljg:! ...... e411-ll 411-12

4 09-25 04JJ - SA

U44Q0--5009 /4(09093-4l1: 41029 410-27 10-25

Ullt9<S
~~~9-50 KlO r 9.,;H9

1 " 0 2 1 0-25 \.

~"' ~~ e).~-~~, ~._~ t_g-~ uo:~~ ; \ 419-sl ,(
440 .:g:~~ m:n UOZt ...._ A
m::: 0

0 1 ~ i' - / .. 'e 40099--llZl Cu1o0-1u5

....u ...a.-]l6l "'

410

u4o10--4109

/ fi.o-u '\uo-32

:! U0-1

...... 'IO

1l 8t

40<0

.... 13
uoI -114

: 111 0 llo-l-1 410 -12

:!8:l~ 40-43

~-19 m:~ eUl-3

:1o-19

m-15 410-36

l!ONRllE CO. CRAWFORD CO

eAll-15 411-16

-~44046 441-4



U0-1 44041 441-5

44015

I

N

o.a-s
~--4.1.8..-.7

'4443 r'4021

::g:; ::Z:U

441-6

441-2 441-1
. .7 2 - 1 472-2

e
0
~~ a-1121

EXPLANATKlN
MINES AND OUTCROPS SAMPLED MINES NOT FOUND..._OCATIOHS APPROXIMATE SAII.fl'L& UO!EJ'

SCAl

0

5

10 kiO

Figure 3. Sample location map. Map shows the location of all the pegmatite samples (solid circles) collected in this district and a number of feldspar pegmatites located to the south in Crawford County. Circles with a central dot are the approximate locations ofmines or prospects which were not found during this investigation. Samples include muscovite, feldspar, biotite and tourmaline samples. Sample numbers are linked to mine and prospect names in Appendix I.

INNER PIEDMONT

BERNER MAFIC COMPLEX
x Ankle Fault

SCALE

e

0 10 20 30

KILOMETERS
I

GEORGIA

Figure 4. Generalized geologic map of the Thomaston-Barnesville district. The location of the Thomaston-Barnesville district is marked by diagonal lines; the Grenville age crystalline basement is shaded; the overlying Late Proterozoic to Early Paleozoic metasedimentary clastic rocks is speckled; and the adjoining metamorphic rocks (mainly gneisses) of the Uchee, Inner Piedmont, and Piedmont terranes; and the Berner mafic complex are labeled. The Gladesville norite is in black. The major faults - the Towaliga, the Box Ankle, the Goat Rock and the Ocmulgee - separate the major terranes. The principle cities (black boxes) are Macon (M), Forsyth (F), Barnesville (B), Thomaston (T), and Griffin (G). The cities- Forsyth, Thomaston and Barnesville, and the Towaliga and Goat Rock Faults are included as geographical references on the district maps which follow. The section line (Figure 5) is to the west ofThomaston. (Map is modified from Schamel and others (1980), Hooper and Hatcher (1989), and Hatcher and others (1989).
9

Inner Piedmont
Belt

Pine Mountain Window

Uchee Belt

NW ..

'/.i7,.r..c:,.-.~ p~-- ~ "-~ ' "-

~ ~ C SE

w

.....

0

I

Paleozoic bhg Biotite-hornblende gneiss

Late Precambrian - {: Early Paleozoic
s
Grenville w

Manchester Schist Hollis Quartzite Sparks Schist Wacoochee Complex

T-B
c

Thomaston-Barnesville pegmatite district Crawford County pegmatite district

Figure 5. Cross-section through the Thomaston-Barnesville district. The line of this section is shown in Figure 4. Shaded areas indicate general position of the mica-rich pegmatites of the Thomaston-Barnesville district and the feldspar-rich pegmatites in Crawford County. This section is modified from Schamel and others (1980) and Cocker (1992).

Wacoochee Complex. Unconformably atop the Wacoochee Complex are feldspar augen schist, layered paragneiss, aluminous schist and quartzite of the Sparks Schist. Relatively pure quartzite of the Hollis Quartzite rests directly on either orthogneiss of the Wacoochee Complex or on the Sparks Schist. The uppermost unit in the study area is the Manchester Schist, which is a thick aluminous, garnet(kyanite)-biotite-muscovite schist (Schamel and others, 1980).
Deformation of the Pine Mountain belt during a probable mid-Paleozoic event apparently remobilized and folded the Wacoochee Complex and the Pine Mountain Series into two (Schamel and others, 1980) or three (Sears and Cook, 1984) large nappes which are overturned to the northwest (Figure 5). The earlier, granulite facies metamorphism of the Wacoochee Complex was overprinted by a greenschistamphibolite (Schamel and others, 1980) middle amphibolite (sillimanite) facies metamorphism which affected both the Wacoochee Complex and the overlying Pine Mountain Series rocks (Smith and others, 1969) during this probable mid-Paleozoic event (Schamel and others, 1980). Smith and others (1969) suggest that a kyanite-sillimanite isograd may be present within the eastern end of the Pine Mountain belt
(Figure 4). Allhough the precise position of this isograd is
uncertain, the isograd does indicate that rocks metamorphosed to the kyanite facies are presently located within an outer zone of sillimanite facies rocks. This present configuration represents an inverse zoning relationship between kyanite and sillimanite. Field studies by Hooper (1986) in the easternmost portion of the Pine Mountain belt indicate that no traces of the Grenville age granulite metamorphism are present and may have been destroyed by sillimanite facies metamorphism.
Descriptions of the host rocks by Furcron and Teague (1943) and by Heinrich and others (1953) do not suggest any particular lithologic control on pegmatite emplacement. Late orogenic conjugate shears, kinks, and warps, possibly formed during the Late Paleozoic (Schamel and others, 1980) may have localized emplacement of the pegmatites in the Thomaston-Barnesville district. Pegmatites commonly occur within or near the contact of the Jeff Davis Granite where it was mapped in the central portion of the district (Clarke, 1952). ThissuggeststhattheJeffDavisGranitemay have been more susceptible to brittle fracturing during this late orogenic event and that these fractures may have been open to deep-seated magmatic tl uids. (Radiometric ages and other age relations discussed later indicate that the pegmatites
are more than 500 million years younger than theJeffDavis
Granite and have no magmatic affinity to this granite).
THE UCHEE BELT
The Uchee belt is a poorly known metamorphic sequence consisting oflayered, migmatitic biotite-hornblende

gneiss and amphibolite of intermediate to mafic composition (Schamel and others, 1980). These rocks are believed to be mainly metavolcanics metamorphosed to the sillimanite facies. In western Georgia, the Uchee belt consists of hornblende gneisses, amphibolites, gneissic metasediments, migmatites, and granitic to monzonitic gneisses (Hanley, 1986). The Uchee belt may be the westward continuation of the Carolina or Avalon terranes (Hatcher and others, 1989). The Uchee belt is separated from the Pine Mountain belt by the Goat Rock Fault (Figure 4), a major, regional, premetamorphic peak thrust fault.
Muscovite-bearingpegmatites are unknown in theUchee belt immediately adjacent to the Thomaston-Barnesville district. Feldspar-rich pegmatites are locally common south of the Goat Rock fault in this part of the Uchee belt (Galpin, 1915; this study).
THE INNER PIEDMONT
Immediately north of the Pine Mountain belt (Figure 4). the Inner Piedmont contains interlayered biotite gneiss, biotite muscovite schist, and minor amphibolite. Schamel and others (1980) suggest that these rocks may have been derived from immature clastic sediments, which may have been volcanic in origin. The Inner Piedmont is separated from the Pine Mountain belt by the Towaliga fault. The Towaliga fault is a complex structure having undergone several periods ofmovement. The latest movement is thought to be normal and after peak metamorphism (Schamel and others, 1980).
THE PIEDMONT
Along its eastern side (Figure4), the Pine Mountain belt is separated from sillimanite grade paragneisses and schists of the Piedmont terrane by the pre-metamorphic peak Box Ankle fault (Hooper, 1986). The Box Ankle fault is a thrust fault characterized by a prograde mylonite (Hooper, 1986).
The Piedmont terrane east of the Box Ankle fault is dominantly a heterogeneous biotite gneiss which locally grades into an amphibole gneiss. Felsic orthogneisses which range from layers up to plutons in size (Hooper, 1986) are also present.
THE BERNER MAFIC COMPLEX
The Berner mafic complex (Figure 4) occurs east of the Piedmont terrane and is separated from the Piedmont terrane by the post-metamorphic peak Ocmulgee fault (Hooper, 1986). This complex consists of a series of layered mafic to felsic meta-volcanic gneisses which have been intruded by a series of ultramafic to felsic meta-plutonic rocks (Hooper, 1986). Metamorphic grade is suggested to be upper greenschist to lowermost amphibolite facies (Hooper, 1986),

11

although Matthews (1967) has reported the presence of sillimanite.
PEGMATITES OF THE THOMASTONBARNESVILLE DISTRICT
PHYSICAL CHARACTERISTICS
The pegmatites of the Thomaston-Barnesville district are small to medium in size. They range from 2 inches (11 centimeters) to 25 feet (8 meters) in width. Most of the pegmatites are less than 200 feet (65 meters) long, alLhough a few may be 200 to 1,000 feet (65 to 325 meters) in length. The most elongate workings in this district, the Brown mine in Upson County, extends over 1,000 feet (325 meters). The Brown mine pegmatite consists of a series of en echelon pods and lenses rather than a singular body. This type of occurrence is unusual in the Piedmont (Jahns and others, 1952). The vertical extent of these pegmatites is largely unknown, because mining or exploration rarely extended below 100 feet (32 meters) or the depth of weathering (Heinrich and others, 1953).
Approximately half of the pegmatites in the district are concordant to the gneissic foliation. The prevailing strike of both pegmatites and gneissic foliation is northeast and the general dip is southeast. The strike of most pegmatites is from N.0E toN.60E. More than two-thirds ofthe pegmatites are steeply dipping to the southeast or are vertical. Very few dips are less than 30 degrees. Attitudes ofpegmatites in the Thomaston-Barnesville district have been tabulated in Appendix V. In those deposits where it has been determined, the plunge is generally steep to the southwest (Heinrich and others, 1953; Jahns and others, 1952).
On a district-scale map (Figure 6), the prevalent northeast strike of the individual pegmatites (Jahns and others, 1952; Heinrich and others, 1953) reflects the overall trend of the central part of the district. The pegmati tes appear to have a more north-northeasterly trend in the northeastern section of the district. Pegmatites in the adjacent Jasper County district have a similar north-northeasterly trend. A number of northwesterly-trending pegmatites appear to define a conjugate set of fractures with the northeast-trending pegmatites. The development of the fractures into which the pegmatites were emplaced may reflect regional stress patterns developed prior to or during emplacement of the pegmatites.
The pegmatites in the Thomaston-Barnesville district occur in three primary forms (Figure 7):
1) tabular bodies, lenses and pods; 2) trough- or U-shaped bodies; and 3) T-orY-shaped bodies (Heinrich and others, 1953). Most pegmatites in this district belong to the first form; they may be concordant or discordant to the metamorphic folia-

tion. Four trough-shaped pegmatites (the Joe Persons, the Corley, the Stevens-Rock and the Barron pegmatites) are known in this district. The Early Vaughn, the Battles and the Mitchell-Creek pegmatites are T-orY-shaped in section or in plan (Heinrich and others, 1953).
MINERALOGY
The pegmatites and the immediately surrounding host rocks are commonly deeply weathered and were poorly exposed at the time of this investigation. The pegmatite mineralogy (Appendix VII) is derived almost entirely from the work of Smith (1931-1933), Furcron and Teague (1943) and Heinrich and others (1953) with minor supplemental information from the current study.
The pegmatites are composed predominantly of muscovite, smoky and milky quartz, plagioclase, and perthitic microcline. Biotite, beryl, tourmaline, garnet, apatite, pyrrhotite, sericite, and graphite may be present as accessory minerals (Heinrich and others, 1953). All tourmalines seen during this investigation are black and are presumed to be schorl. Most of the feldspars analyzed in this study are potash-rich. Plagioclase may have originally been more abundant, but weathering has altered the plagioclase to clays.
Regional mineralogical zoning is illustrated by a map of the recorded mineral occurrences within this district (Figure 8). The map is simplified to indicate the unusual mineral occurrences and not the presence of quartz, muscovite and feldspar in each pegmatite. Beryl- and schorl tourmaline bearing pegmatites are concentrated near the approximate geographic center of this district which is just to the west of Yatesville.
INTERNAL ZONING OF THE PEGMATITES
The pegmatites in the Thomaston-Barnesville district are unzoned, poorly zoned, or distinctly zoned with two to five zones (Figures 9A and 9B). Heinrich and others (1953) indicate that two or more zones are developed in approximately 80 percent of the best exposed pegmatites. Studies by Jahns and others (1952) relate the zoning in the pegmatites in the Thomaston-Barnesville district to the distribution and lithology of zones characteristic of pegmatites within the southeastern Piedmont. Because of poor exposures or the lack ofexposures at the time of the present investigation, and the lack of detailed studies in previous work, this investigation does not attempt to elaborate on the pegmatite zoning in the district presented by Jahns and others (1952) and Heinrich and others (1953) and discussed by Cameron and others (1949) and Jahns (1955; 1982).
Pegmatites with two zones contain an inner core of medium-grained granitoid rock and an outer core of (a) finer-grained granitoid rock, (b) burr rock composed of

12

y

r/

~

!":')~

"I
,

~ IAIIIESVIllE .......

/

~s~..,,~''

I

j - - . .

f+~;- '1--'

-*

+-
f

I

....
w

~~

'::i:/

' ~~~~~4Jll~~

/ ~:~=~~=:.-:~~~~A DOT;
... .T.Ikl UlltCT11 IS I:U.IC..ATO)
~
i?~-==- Muoa CMioTnc TIIU.

~: "' ~

Mt-. C.OSSCUTTIN& Kt!M&TITI fill..

SCAlE

N

0

5

10 ""

I

~I

Figure 6. Pegmatite trend map or the Thomaston-Barnesville district. The main trend of the pegmatites in the Thomaston-Barnesville district and the trend of the main group of pegmatites is outlined by the narrow shaded pattern. It strikes obliquely across the Pine Mountain terrain between the Towaliga and Goat Rock Faults. Pegmatites in the northeastern part ofthe district generally strike in a more northerly direction. Several northwesterly trends (wide shaded pattern) extend across the main pegmatite trend.

Figure 7. Primary forms of pegmatites in the Thomaston-Barnesville district. Block diagram illustrates the lens shape (A) of most of the pegmatites in this district and the U-shape (B) or T-orY-shape (C) of a few of the others. (Modified from Jahns and others, 1952).
14

, .

.... I

'

-


~ '



- ...

I } \.
I \

~TO!SY'" ./

.



...I
-'
/

J


.,.,

~I



.....
U1

/
;-* I*

e~r I



I .,




TH~Sd)

/ /

........ /



, -

/*_,._._

;;..--*-
~



*: I

__....,.,-
* PEGMATITE MINERALOGY BUYL +/- SCHORL TOURMALINE 1- APATITE SCHORL TOURHALJNE +/- APATIH
PEGMATITE WITHOUT RECORDED BE"YL

~




0~ TOUI=IWAL I NE

' '

ZONE OF BERYL-BEARING PEGMATfTES


-


N

~I

0 L

S.Cll
~
1

10 kP4 I

Figure 8. Regional mineralogical zoning in the Thomaston-Barnesville district. This map shows the location ofpegmatites with recorded beryl, schorl tourmaline and apatite and those pegmatites which do not contain these minerals. Most pegmatites in this district also contain quartz, muscovite and feldspar. The zone of berylbearing pegmatites is located within the central portion of the district. (Mineralogy based on Smith, 1932-33, Furcron and Teague, 1943; and Heinrich and others, 1953). Kyanite-sillimanite isograd is from Smith and others (1969).

SIMPLE ZONED PEGMATITE
A
COMPLEX ZONED PEGMATITE
.....
0)
EXPLANATION A Plagioclase-quartz-muscovite pegmatite B Plagioclase-quartz pegmatite C Massive quartz
o Perth ite-plagioclase-qu artz pegmatite
E Coarse blocky perthite pegmatite F Coarse muscovite-quartz-perthlte pegmatite
Figure 9. Generalized zoning in muscovite-bearing pegmatites. A) Simple zoned pegmatites. B) Complex zoned pegmatites. The most common types ofzoning in pegmatites in this district are illustrated. The size and shape as well as presence of individual zones shown in this figure are variable.

Figure 10. Types of mica deposits within the Thomaston-Barnesville district. Mica deposits may occur in the wall zone, the intermediate zone or disseminated throughout the pegmatite. Range of pegmatite dimensions are indicated.
17

intergrown quartz and mica, or (c) mica-rich pegmatite (Heinrich and others, 1953). Simple zoned pegmatites with more than two zones (Figure 9A) typically have a monomineralic massive quartz core or bimineralic core of quartz and blocky K-feldspar encompassed by a plagioclase-quartz pegmatite and an outer zone plagioclase-quartzmuscovite pegmatite. Complex zoned pegmatites may contain the additional zones shown in Figure 9B.
In the Thomaston-Barnesville district, mica was mined from three types ofdeposits: 1) disseminated mica in unzoned or poorly zoned pegmatites, 2) wall-zone mica (Figure 10), and 3) core-margin (intermediate zone) mica (Figure 10). Although core-margin deposits are the most abundant in this district, wall-zone deposits accounted for a large portion of this district's mica production (Heinrich and others, 1953).
Large quantities of perthite in several of the district's mines apparently were recovered. Perthite recovered during post-World War II operations was probably mined from perthite-rich zones developed in some of the complex zoned pegmatites (Figure 9).
GEOCHRONOLOGY
Cross-cutting relations indicate that the pegmatites in the Thomaston~Barnesville district are distinctly younger than any of the rocks in which they intrude. The absence of penetrative deformation in the pegmatites also indicates that they are younger than the host rock's metamorphic foliation. These pegmatites are enclosed in Grenville-age rocks within the Pine Mountain terrane and within the early Paleozoic(?) rocks of the southern part of the Inner Piedmont terrane, as well as those of the Piedmont terrane and Berner mafic complex to the east. Because this district overlaps all four of these terranes where they are adjacent to each other, it is suggested that the pegmatites of the Thomaston-Barnesville district were probably emplaced subsequent to the juxtaposition of these terranes. This statement is based on the assumption that all the pegmatites in this district are the same approximate age.
Field relations indicate that the Inner Piedmont terrane, thePiedmontterrane, the Pine Mountain belt, the Uchee belt, and the Berner mafic complex were joined together during one major episode of progressive thrusting. Thrust faulting occurred before, after, and possibly during the peak metamorphism to amphibolite grade. Isotopic age determinations suggest that youngest recorded peak metamorphism in this part of the Georgia Piedmont occurred about 360 m.y. (Odum and others, 1982).
Isotopic age determinations suggest that the pegmatites and granitic plutons in the southeastern Piedmont and Blue Ridge formed during two periods of igneous/metamorphic activity: 350-340 m.y. and 325-265 m.y. (Fullagar and Butler, 1979). The late Paleozoic granitic plutons, which are located southeast of the Brevard Zone (Figure 11), have

yieldedRb-Sragedeterminationsof325 to 265 m.y. (Fullagar and Butler, 1979).
Deuserand Herzog (1962) define two distinctperiods of pegmatite formation in the Blue Ridge and the Piedmont terranes in North Carolina: 350 m.y. and 500 m.y. using the Rb-Sr method. In the Cherokee-Pickens district, Gunow and Bonn (1989) report K-Ar agesof356 +/- 20 m.y. and 338 +/ - 5 m.y. for muscovites. Gunow and Bonn suggest that these pegmatites were emplaced subsequent to or near the peak of regional metamorphism in the Blue Ridge terrane.
In the Piedmont terrane, ages are more consistent with the younger period of plutonic igneous activity. Rb-Sr age determinations of muscovites and biotites in Piedmont pegmatites average 285 m.y. (Deuser and Herzog, 1962). In the Thomaston-Barnesville district, muscovite from the Mauldin mine had an apparent age of 296 +/- 16 m.y. and biotite had an apparent age of 256 +/- 12 m.y. (Deuser and Herzog, 1962). Apparent K-Ar ages of288 +/- 9 m.y., 360 +/- 11 m.y., and 233 +/- 7 m.y. were obtained from muscovite, albite, and orthoclase, respectively, from a pegmatite in the Jasper district in the Berner mafic complex (Jones and others, 1974). The albite age is suspect as the K content is very low. ARb-Sr isochron date of that pegmatite yielded an apparent age of 339 +/- 16 m.y. (Jones and others, 1974).
PEGMATITE GEOCHEMISTRY
PEGMATITE FRACTIONATION AND TRACE ELEMENT GEOCHEMISTRY
Granitic pegmatites are, in general, similar in composition to granite. Most granitic pegmatites have lowerCaOand
fheilgdhsepraAr lc2oon3tetnhtancothnetroavlleinraggethgeraKn2it0etwNiath2oa vraartiiaobl(eCaelrknayli,
1982a). The highly peraluminous nature of these pegmatites is reflected principally by the high mica contents. The typical components ofgranitic pegmatites (Cerny, 1982a) in decreasing order of abundance are:
1. 0, Si, AI, K, Na, Ca, Li 2. Rb, Cs, Ba, Mg, Fe, B, F, P 3. Sr, Mn, Be, Sn, Ti, Zr-Hf, Nb-Ta, Y, rare earth elements (REE), U, Th, CI, C 4. Sc, Mo, W, Bi, As, Sb, Zn, Cd, Cu, Pb, Tl, Ga, Ge
Except for the main rock-forming components listed in group 1above, most of the other components are usually less than 1 weight percent.
The less abundant elements are incompatible with the crystal structures of the silicate minerals formed during much of the crystallization history of a granitic magma. During the fractionation of a granitic magma, these incom-

18

I , - - - - - - - - - - G ETEO NNER SSEG E NiOART}iJ,;tJ!0-14!iO..

\

I

\

I

\

I
\

I

\

F

I

\

I

\

.
\
i ~ \Ot.;; \ I

. \ .
I
\
\
~
~COLU MIJU,S

0

50 lOLOMETERS

IF'd E3 1

0

50 MILES

1F3F+31

~ PEGMATITE UISTRICf

A Thomaston - Barnesville

H Troup
c Jasper

D Putnam

E Crawford - Jones - I3aldwin

F Cherokee - Pickens

G Carroll - Paulding

H Hartwell

I

Rabun

J

Lumpkin- Union- Towns

K IIabersham

L Oconee

GRANITES

D

Carboniferous granites

Silurian - Devonian granites

Pre-middle Ordovician granites (mostly Camhrian)
Granite-granite gneiss complexes of more than one age

-

Granites of unknown age

Figure 11. Pegmatite districts and granitic plutons in Georgia. Districts are the same as in Figure 1. The location ofthe granitic plutons are based on Higgins and others (1988).

19

patible elements are concentrated in a volatile-rich residual magma or magmatic vapor phase. Mechanisms for concentration of these incompatible elements include: partial melting of source rocks, crystal fractionation and liquid state diffusion in parental granites, and vapor fractionation and thermo-gravitational diffusion in regions of high geothermal gradients (Gunow and Bonn, 1989). Whichever process or processes are involved, the key result is the concentration of a volatile-rich residual magma or magmatic vapor phase.
The residual magma or vapor phase is commonly concentrated near the top of a cooling magma beneath the solidified carapace. Fracturing of the carapace allows the residual magma or vapor phase to escape into the carapace or into the surrounding country rocks. Generally, these fluids will cool and crystallize as dikes or veins depending on their composition and the enclosing physicochemical environment. The extent to which these fluids travel is dependent on their composition, the geothermal gradient and the fracture or plumbing system. Fluids which are rich in volatiles and which do not loose volatiles to the surrounding rocks have a lower viscosity and tend to be driven further away from the cooling, crystallizing magma.
Granitic magmas generated during regional high-grade metamorphism generally are volatile-poor because progressive metamorphism is a dcvolatilization process. This generally results in the formation of simple, dry pegmatites containing quartz and sadie and potassic feldspar. A rapid increase in the geothermal gradient in rocks which contain hydrous phases such as micaceous schist or mica- and amphibole-rich gneiss could result in the generation of a hydrous or volatile-rich granitic magma. Under these latter circumstances, a source rock anomalously high in incompatible elements might yield a rare-element bearing magma.
Rare-element pegmatites contain exceptionally high concentrationsofLi, Rb, Cs, Tl, Be, Nb-Ta, Ga, Ge, B, F, and P. Mica-bearing pegmatites contain relatively high levels of Ca, Ba, Sr, Fe, Mn, Ti, Band P, and locally may contain rare earth elements (REE's) as well as actinides. The regional high-grade metamorphic pcgmatites of the maximal depth group are typically enriched inCa, Ba, Sr, Mg, Fe, and Ti; they rarely contain light REE's and rare clemenL'> (Cerny, 1982a).
The geochemical trends observed in pegmatite fractionation are similar to and extend those trends observed in plutonic gnmitcs. The ratios: K/Rb, K(fl, Ba/Rb, Rb/Sr, and Nb(fa all tend to decrease to extremely low values with increasing pegmatite fractionation (Cerny, 1982a). Plots of these ratios versus trace elements illustrate the differences in pegmatite groups and demonstrate trends in pegmatite fractionation.
In the U.S.S.R. and more recently in Canada (Cerny, 1982a, 1982b; Cerny and others, 1986; Trueman and Cerny, 1982), pegmatite invesligations have emphasized regional mineralogical and geochemical zoning along with the pctro-

genesis of the different types of pegmatites as a means of locating and identifying potentially economic pegmatites. The trace element geochemistry of pegmatitic K-feldspar and muscovite has repeatedly demonstrated that trace element geochemistry is an effective means of determining fractionation trends within pegmatite districts and in assessing the economic potential of the individual pegmatites (Trueman and Cerny, 1982).
Trace element geochemical analysis of muscovite and feldspar is particularly useful in the southeastern United States because of the extensive weathering. Of the common minerals present in a typical pegmatite, muscovite is the only mineral structurally favorable to include a variety of the incompatible trace elements as substitutions in its structure. Also, muscovite is essentially unaffected by weathering and commonly is the only surface indicator of a mica-bearing pegmatite. In the uncommon pegmatites which are feldsparrich and mica-poor, feldspar is unaffected by weathering, and can be used instead of muscovite. It is critical, however, to compare muscovite and feldspar analyses separately.
Current and recent investigations by the Georgia Geologic Survey have established that the trace-element geochemistry ofpegmatitic muscovite is a powerful and practical tool in the economic evaluation of granitic pegmatites in Georgia (Gunow and Bonn, 1989; Cocker, 1990; Cocker, 1991). Gun ow and Bonn (1989) demonstrated thatmuscovites within the more strongly fractionated pegmatites of the Cherokee-Pickens district are enriched in the rare elements (Be, Nb, Li, F and Rb/K). Also, the muscovite in the berylrich pegmatite of the Cochran mine in the Cherokee-Pickens district is geochemically distinct from the muscovite in other beryl-bearing and beryl-poor pegmatites within the same pegmatite field.
MUSCOVITE GEOCHEMISTRY
The following discussion is based on the geochemical results contained in Appendix II, scatter plots of trace clements, and district-scale geochemical maps. The scatter plots (Figures 12 to 21) illustrate the correlative variations between the trace elements and the relative amount of differentiation exhibited by each pegmatite. Where possible, the trace element chemistry from the Cherokee-Pickens district(Gunow and Bonn, 1989) is included in several of the scatter plots for a relative comparison. Use of that data (Gunow and Bonn, 1989) assumes the accuracy and precision of the geochemical data from the two different projects are approximately similar. Although some of the data obtained in this study was obtained from the same commercial geochemistry lab used by Gunow and Bonn (1989), several years separated the analyses and no duplicates ofGunow and Bonn's samples were available to correlate the results of Lheir work with that of the present study.
The geochemical maps (Figures 22 to 32) illustrate

20

8000 ~----~----~--~----~----~----~----~~----~

l .. . . . . . .

t



+ .

~

7000 ...............-r-..ttor-~. ...... ..

.

~

-r-j..

: :t=: \ 1 ~1:--t r: t::

><
CP Be-poor +
CP Be-rich
D
Thorn-Bam

!........ ;......... p. ck;... .:.. E~

:

i

4000 ............... j............

I
o ......

D

i

i

f...... .... .... ...

l

!i........ .

J. ....... I u.

i

i

b !

I

3000 io. ................ ~----1..---k--------~--J...............

: ++ j.................

P0 b

1

i

i

i

i

IJ :.! : :t:~I: :t:J : [J

.

.""2" +

i. .w....

j
l

0

! i !

:
.
:

!
.
l

1
! :

0

50 100 150 200 250 300 350 400

Rb/K (ppmx1 0000/ppm)

Figure 12. Scatter plot ofF versus Rb/K in pegmatitic muscovite. Results (Appendix II) from the Thomaston-Barnesville district (boxes) are compared with beryl-absent and beryl-poor pegmatites (exes) and beryl-rich pegmatites (crosses) of the Cherokee-Pickens district (data from Gunow and Bonn, 1989).

400 ~----~----~, ----~, ----~----~----~----~----~ ~------~

j

L.. + :

l

['"

'

;

><

350

CP Be-poor

+

300

CP Be-rich

CJ

250

Thom-Barn

E

~

+

::.,~-.l;~t~Dr ~ f :~I 1I :

SO'b........

0

0

50

j. ...............i,................. j.............;..................;..................;...................

.

i

-

!

i,

6.

D

!_

:

I

!

!

i

._1

!,

100 150 200 250 300 350 400

Rb/K (ppmx1 0000/ppm)

Figure 13. Scatter plot ofNb versus Rb/K in pegmatitic muscovite. Results (Appendix II) from the Thomaston-Barnesville district (boxes) are compared with beryl-absent and beryl-poor pcgmatites (exes) and beryl-rich pegmatites (crosses) of the Cherokee-Pickens district (data from Gunow and Bonn, 1989).

21

geochemical values or ratios coded with symbols in order to simplify the appearance of each map and to focus attention on the location ofgeochemical anomalies and trends. Circles represent the lowest values; squares represent intermediate values; and stars are the highest values. Because of the extreme diversity in geochemical values, and these figures are not contoured. Groups ofpegmatites containing the most anomalous values are oullined by dashed lines. The major faults on the north and south sides of the Pine Mountain terrane and the approximate location of the kyanite-sillimanite isograd (after Smith and others, 1969) are indicated.
The F and Nb concentrations in the muscovites from the Thomaston-Barnesville district overlap those of the berylabsent pegmatites of the Holly Springs field and of the berylpoor pegmatites of the Ball Ground field and extend across the range between those pegmatites and the beryl-rich pegmatites of the Ball Ground field (Figures 12 and 13). Muscovite from the beryl-bearing pegmatite of the Reynolds mine in the Thomaston-Barnesville district contains a similar Nb content (334 ppm) as that from the Cochran mine.
Muscovite in the beryl-rich pegmatitesofthe CherokeePickens district are enriched in Be relative to pcgmatites of the Thomaston-Barnesville district and the beryl-poor and beryl absent pegmatites of the Cherokee-Pickens district (Figure 14). The major implication of Figure 14 is that the potential for beryl-rich pegmatites in the ThomastonBarnesville district is small.
The Li content of the muscovites in the ThomastonBarnesville district is similar to that of the muscovites in most of the pegmatites of the Cherokee-Pickens district (Figure 15). The Cochran mine is enriched in Li relative to the other pegmatites in that district.
In the Thomaston-Barnesville district, Rb increases
(wFiitghurienc1r6e)a.sEinngricKhm2oentfoorfRRbbregleantievrealtloyKb2eoloowccu7r0s0abpopvme
700 ppm to over 1500 ppm Rb principally within the 8 to 9 weight percent K20 range. Muscovite in the beryl-rich pegmatites of the Cherokee-Pickens district is enriched in Rb and K20 relative to the most Rb-enriched muscovites in the Thomaston-Barnesville district.
Seven muscovite samples are distinctly enriched in Ta (95 to 189 ppm) compared to the other muscovite samples in the Thomaston-Barnesville district (Figure 17). Zn values progressively increase up to 120 ppm with increasing Rb/K (Figure 18). Zn values which range up to 226 ppm do not appear to be related to theRb/K ratio. NoTa orZn values are reported for the Cherokee-Pickens district (Gunow and Bonn, 1989).
The Ba concentration increases dramatically at low Rb/ K ratios in muscovite from the Thomaston-Barnesville district, the Holly Springs field and the beryl-poor pegmatites of the Ball Ground field of the Cherokee-Pickens district (Figure 19). Muscovite samples which have low Ba contents have a significantly higher Rb/K ratio principally because of

an increase in Rb. Although Ba and Rb compete for the same structural site in muscovite, the Ba concentration is significantly greater in muscovite from less fractionated or muscovite-bearing pegmatites (Shmakin, 1984; Gunow and Bonn, 1989) than from more highly fractionated or rare-element pegmatites. This relation is demonstrated by higher Ba concentrations in whole-rock analyses of less fractionated granites compared with more fractionated granites (El Bouseily and El Sokkary, 1975). Because V also competes for the same structural sites asK, Rb, and Ba, V is higher at low Rb/K ratios (Figure 20).
The Ba/Rb ratio is also used as an indicatorof the degree of pegmatite fractionation. The Ba/Rb ratio is in the range 0.3-0.7 in muscovite-bearing pegmatites, and this ratio is in the range 0.002-0.02 in rare-element pegmatites (Shmakin, 1984). Muscovite from the Cochran mine in the CherokeePickens district has a Ba/Rb ratio of 0.1 (Gunow and Bonn, 1989) which lies between the Ba/Rb ratios for muscovitebearing and rare-element pegmatites (Shmakin, 1984). The Ba/Rb ratios for muscovites in the Thomaston-Barnesville district are in the range 0.02-5.59. Thirteen pegmatitic muscovite samples have a Ba/Rb ratio in the range 0.02-0.09 which overlap the range for rare-element pegmatites.
Geochemical data for a variety of pegmatite classes from around the world compiled by Cerny and Burt (1984) show that each pegmatite class appears to have distinctive trace element signatures. Most of the pegmatites in the Thomaston-Barnesville district, Holly Springs field and beryl-poor pegmatites of the Ball Ground field in the Cherokee-Pickens district lie in or near to the muscovite class of pegmatites as depicted on a scatter plot (Figure 21) of the log K/Rb ratio versus log Li (Cerny and Burt, 1984; Gunow and Bonn, 1989). A few pegmatites from the ThomastonBarnesville district as well as the Cochran mine pegmatite (Gunow and Bonn, 1989) occur in or beyond the rareelement pegmatite field shown by Cerny and Burt (1984).
The geochemical maps (Figures 22 to 28) indicate that the highest concentrations ofF (2000 to 7076 ppm), Be (10 to266.5 ppm),Li (40to greaterthan 100ppm),Nb(70to 334 ppm), Rb (600 to 1534 ppm), Ta (95 to 189 ppm), Zn (70 to 226 ppm) are concentrated in the central part of the district. The more highly fractionated pegmatites (higher Rb/K20 ratios) are located within the central part of the district and in the northwestern part of the district (Figure 29). The highest Ba concentrations (400 to 1456 ppm) are located peripherally to the central part of the district (Figure 30). The more highly fractionated pegmatites (based on the lowest Ba/Rb ratios- 0.02 to 0.39 ppm) are mainly located within the central part of the district (Figure 31). A second zone of more highly fractionated pegmatites appears to be located in the northwestern part of the district.
Three northeast-trending zones containing the highest V values (30 to 186 ppm) extend along the center and edges of the Pine Mountain terrane (Figure 32). The higher V

22

45 ~----~----~----~----~~----~----~----------~ r--------~

!

:

!
j +l

:

j

; +

><

40 :jt....ji... j-!+""''''"' CP Be-poor

::::i:=:r.~;t=.~l ~:~:t::::~:~: + CP Be-rich

CJ

l :

j-:: : Thom-Barn

t J:::t=J:::=I + ! ; 20 ~~ ; ~ ~ I i
:: - 'c~~::~:J

5

F t:l ! l 0

.....

..

(.................

ciiJ.....9

.........;............

......,i..

..

.......

...

j
~ ...................

j
j ................. .

!~ : j I!

O+-----~------~= ------+' ------r' ------'r-----~'------4!------4

0

50

100 150 200 250 300 350 400

Rb/K (ppmx1 0000/ppm)

Figure 14. Scatter plot of Be versus Rb/K in pegmatitic muscovite. Results (Appendix II) from the Thomaston-Barnesville district (boxes) are compared with beryl-absent and beryl-poor pegmatites (exes) and beryl-rich pegmatites (crosses) of the Cherokee-Pickens district (data from Gunow and Bonn, 1989).

700

I

)(

i. . . . . . . .. l. . . . . .. . ..i.. . . . . .... 600 .................-J.-................t--1* [-- ..---:_,,............tt--"''''"""

+

!

i

'

:

:

500

... . .... . l... :

..... :

l...... . !.. 1:.... t ..........J,..................

!

l

:

:

:

CP Be-poor +
CP Be-rich
CJ

I..... .....;. . .... L........ L........ E 400 ..................;..................l..................

J.. ................

Thom-Bam

.as.

::J 300

200

100

CJ

e i
b

+

a+c!P

i

CJ :
tJ
:

:

i

!



:

100 150 200 250 300 Rb/K (ppmx1 0000/ppm)

+
i ! :
350 400

Figure 15. Scatter plot of Li versus Rb/K in pegmatitic muscovite. Results (Appendix II) from the Thomaston-Barnesville district (boxes) are compared with beryl-absent and beryl-poor pegmatites (exes) and beryl-rich pegmatites (crosses) of the Cherokee-Pickens district (data from Gunow and Bonn, 1989).

23

3500

3000

i

,, ,,,,,,,,,,,,,,.,...... .................... +! I

,

I

,

a ;~ . .r-" -- r ~u ! H

)(
CP Be-poor

1 '

+

i

: +

:

I:

:

:

2500 :r1' r:...................:~ -----...................i~.......................

i I

; :

:
~

i :

i : +

- , : l r- Eaa..

2000

! . l ...............

..

......

. l

""""~

--

-

---""

"'

i'

"""""""

"

"

""

""'"

f
-l"''

"""

'"''

''""

''"

t"

"

...... ....... .....

.1~ ..................

~

- .............l............ t........o...~.....,............. a.D: 1500

l- ----- ..................

CP Be-rich
D
Thorn-Bam

!

1

io D !

~

1000







!
!

..

-...................

!
j...................

.....

ti

oU --+-.

.

.

..........!fD..

--.......+....f;

...................... .

'

I

1

i

I

D :

i

500 ........................!......................!--rnflo..

: D

0 D ~;

j

D :D

~ 0 6' +
-~s.P....w..--

O+-------~--------,'.--------;r-;3-----r--------T--------1

5

6

7

8

9

10

11

K20 (weight percent)

Figure 16. Scatter plot ofRb versus K20 in muscovite. Results (Appendix II) from the Thomaston-Barnesville district (boxes) are compared with beryl-absent and beryl-poor pegmatites (exes) and beryl-rich pegmatites (crosses) of the Cherokee-Pickens district (data from Gunow and Bonn, 1989).

300.-----~----~----~----~----~----~----~---.

i

i

!

'

i

250

.................:....-.g

:
........~

................

..

. ~

....

..........

....

~

..

................lI

.......

(l......

...........

.~.

.....

..

..........

j

l

~

l

!

~

;

200
E
sa. 150

100 ...

rSl.., Do !

I

:

i

;

0 ~~',-t~ .': .,~l~r6Di_~OD ~bb: ~D4I' ~~'f ---I~'~----+--~;---~

0

50 100 150 200 250 300 350 400

Rb/K (ppmx1 0000/ppm)

Figure 17. Scatter plot of Ta versus Rb/K in muscovite. Results (Appendix II) from the Thomaston-Barnesville district are indicated. NoTa analyses are available from the Cherokee-Pickens district for comparison.

24

2 501~----~--~~--~----~--------------~----~ !
i D

200

. .
000000 0 0 00000 0 0 0 00 ~ 00000 0+ oo o o 0000 00 ! 000

! . . .
000000 0 0 00o .. !0 000000000 00 000000 0;0ooooooo0 0 0000000 0; 0 0000000000000 o0o O~ O ........ ._.M~OO OO O O O O O0; .OOOooooo o ooo o oO

a .i=,

' 0

:

:

l r. . .. .. rI. . . . . rI . . I TI......... ! ~ 150 T!' "~ 0e!r-

!

D []

' i

'

I

T: ............... :

: oo''- - ~ ~ ~ I )- L I _). . . .. . ..

!c~ o !

D ;c

P

l: 0

1
!

:
:

:
i

:
:

zor r I 1P ~cP b

1

'

l

~

~

50

'"+-J

1

Ci@f'c:P:

i

~

~

;

~

~o 1 . i l l 0 +---0 ~ 0 ,:0~-0 -~-----+-----4----~f------~----~--~

0

50 100 150 200 250 300 350 400

Rb/K (ppmx1 0000/ppm)

Figure 18. Scatter plot of Zn versus Rb/K in muscovite. Results (Appendix II) from the Thomaston-Barnesville district are indicated. No Zn analyses are available from the Cherokee-Pickens district for comparison.

~ ~----~--~----~----~----~----~--~----~

><

2500 .................!...........--r- ........... L...............~.................;..................!.................:...............

j

I li

l
l

:
~

l i

;
~

2000

E

+

a.

.9:: 1500

1'0 Ill

><
CP Be-poor +
CP Be-rich
D
Thorn-Barn

1000 ............

I ! I I I l

500

i- 5!! ...

b ~

1

~

+ !+ !

l I ++

0 +---~~---~~~~~~~~F-~~+-----4-----~----~

0

50 100 150 200 250 300 350 400

Rb/K (ppmx1 0000/ppm)

Figure 19. Scatter plot of Ba versus Rb/K in pegmatitic muscovite. Results (Appendix II) from the Thomaston-Barnesville district (boxes) are compared with beryl-absent and beryl-poor pegmatites (exes) and beryl-rich pegmatites (crosses) of the Cherokee-Pickens district (data from Gunow and Bonn, 1989).

25

200~----~----~--~----~----~----~----~--~ i
I
:: -~r~ t ~ - - ~ t!: :t:iJi : i! I l
:: r: r:J ~ :~- ~~~ 1: ::!-~]

> ao~ ............~m~-a~- -L-.............L....... . . .)........... .j..................~...................~.........._......

:

o~~ ~[: ~]:

~

I 1
1!

:

;
r

:
:::r:=

20 ........cfl

..;............oo-------cr..b -...............;..................!- ...............;...---

a~ iJ

fli=n1J

i :

: i

: :

l :

: :

0 +-----~-~~QF~- ~--~,~~~+' ----~'r-----+' ----~'----~

0

50 100 150 200 250 300 350 400

Rb/K (ppmx1 0000/ppm}

Figure 20. Scatter plot of V versus Rb/K in pegmatitic muscovite. Results (Appendix II) from the Thomaston-Barnesville district are indicated. No V analyses are available from the Cherokee-Pickens district for comparison.

.B, EAYL ~:OOR

, / CHEAO\(EE.f'ICKENS

2.5 ,....................... ,~ ......,... JE..:l:tW'r '""''~ .........................;............................

+, I"' "' ~ l

i

E-.aEaaa--...,

2 1.5

~:

.!)
a:
~

0)
0 ...J

0.5

>< CP Be-poor
+ CP Be-rich
0
Thorn-Barn

0

0

2

3

4

5

Log Li (ppm)

Figure 21. Scatter plot of log K/Rb versus Li in pegmatitic muscovite. Results (Appendix II) from the Thomaston-Barnesville district (boxes) are compared with beryl-absent and beryl-poor pegmatites (exes) and beryl-rich pegmatites (crosses) of the Cherokee-Pickens district (data from Gunow and Bonn, 1989). Also represented are fields for rare-element pegmatites, muscovite-rich pegmatites (after Cerny and Burt, 1984), and the rare-element Harding and Tanco pegmatites (data from Jahns and Ewing, 1976; Renaldi and others, 1972; diagram modified from Gunow and Bonn, 1989). The direction of increasing differentiation is from the upper left to the lower right in this diagram.

26



'



,._/ '\

,









'

5S;OIISVTH



/ i *

1\)
.......

/

'\

--I *"- I

/

/ /



I

/
\* I

**

I
I ,



T~Sd)

I
/

*

'-.- '











.,.

,


o~

._


* FLUORINE IN I<SCOVITE 2000 7076
uoo - 199'9 ~~~
100 - 1399 PPM

N

~~

0

SCAlE ;.

10 kM

Figure 22. Map of the distribution ofF in muscovite. Results (Appendix II) indicate that the highest F values (stars and squares outlined by the dashed line) occur mainly in the central part of the district and in the Indian Grave field to the northwest. The location of the kyanite-sillimanite isograd, the Towaliga and Goat Rock
faults are shown for comparison.

I



~ <.)-
"'-'-\

- ,.
I

,


.......... )






I

/
*

\ I

I

/

,_.. I

I

I t

/



'

~OASYTH

N CXl

'It

I

..

/

I


*

.~ /



/

/

./....
~I



.. /
/ /
/

/

./

JjASTO~

, -. /
/ *

/ .........

/

........


/
...-;-

..

~~~"''


,.

*SE 1'-1 MUSCOVITE 20 - Z66 . S PPM IQ r I ' II} llljJ'f1

N

1 - ' ' ..p ..

~I

0

SCALE S

10 k.M

Figure 23. Map ofthe distribution of Be in muscovite. Results (Appendix II) indicate that the highest Be values (stars and squares outlined by the dashed line) occur mainly in the central part of the district and in the Russelville field to the southeast. The location of the kyanite-sillimanite isograd, the Towaliga and Goat Rock faults are shown for comparison.

--- '



*t



I
I



' -..

I
I

I

/.





'I


-
-r;z:;- - - - BARNESVILLE

....
./


...



'

' "'
I I....._

N

..'. \
' /





,/... *' \

CD




'

I


I

THOHAS1 J

I /

*

.I
r

- -- ,/.,.,.

..
.

,.




* .LITHIUM lN IJSCOYITE 100 40 - 90 1- 39



SCALE

N

0

3

10 kM

~I

Figure 24. Map of the distribution of Li in muscovite. Results (Appendix II) indicate that the highest Li values (stars) occur mainly in the central part ofthe district and in the Lighthouse field to the northwest. The dashed outlines include pegmatites with the higher values ofLi (stars and squares) The location of the kyanitesillimanite isograd, the Towaliga and Goat Rock faults are shown for comparison.









- -


-~ /






'\

UQ ........
BARN[SVI~[\


*I
/



I
'*I
'



..,... ~

/

(,.)
0

I / ~
-I
THO~Sd)

/
I
I* .\ I / *

/
*/."_': /


;/

,

I

! **

I

I

I I

I1 I

/

/

\ I
/

~ /-

-K

.. .- /. - /

.4 /.-



/
\*,:/('

~ ,.,._

* NIOUUH lN H'JSCOV[T[ 100 - ll



10 99

I - 69



N

~~

0

SCALE S

18 K"

Figure 25. Map ofthe distribution ofNb in muscovite. Results (Appendix II) indicate that the highestNb values (stars and squares outlined by the dashed line) occur mainly in the central partof the district A few other high values are scattered in theremainder ofthe district The locationof the kyanite-sillimanite isograd, the Towaliga and Goat Rock faults are shown for comparison.

......

I \

I
'**
- ' j: /



.#/.



I




....--
*




\

!.I:'.'

tAIHSY1ll

It./ , .'.,.

I /

_,

/
I
/ I

F


\ '/

- *!

w.....

/
'*

** / I

I

/

r~mj)

/
*/



- \'l-... -....










,;- ;,;c............




* RUBIOIUH IN 11USCOYITE 600 - 123 .... 400 - 599 195 - 399 PPf1

N

~~

0

SCALE 5

IO lM

Figure 26. Map of the distribution of Rb in muscovite. Results (Appendix II) indicate that the highest Rb values (stars outlined by dashed lines) occur mainly in the central part of the district and in the Indian Grave field to the northwest The location of the kyanite-sillimanite isograd, the Towaliga and Goat Rock faults are shown for comparison.

1 /*- *".

'* **'. . -/



,





,..,.
/
I**
I
I*

/ \

.. /.*.'. ~AIUlf'So~l llE

(;,~
LJV
/

/

/

/

/ /'

/'

I / ..



,.


~FORSYTH

(,J 1\l

._

,..I I
I */



/



. /* 1 /

/

/

\ */


I


----.!':\

TH~AS:/)











., /'/~-~

,.



* TANTALUM 95 - 189

8 - 76

e

-I

IN HUSCOVITE ....

N

~~

0

SCALE ;

I D KH

Figure 27. Map of the distribution of Ta in muscovite. Results (Appendix II) indicate that the highest Ta values (stars outlined by dashed lines) occur in a narrow band in the central part of the district Other high values in the northwestern part of the map are from one geochemical report and may be erroneous. The location of the kyanite-sillimanite isograd, the Towaliga and Goat Rock faults are shown for comparison.



'





~// ., . _,

_..._,.,....

/

/

,







- - ~/._,
y 21""' ~

/
/ I
/
* /
/
/ /4
'\-- I

/
/
"

I

..-...-..

(.) (.)

I

- , _ / .......

I

/

Jj"ASI~

I





I

I

--/

/
~

-

**

t

-~ ...

/
~*



' ~ ;-~

/ I
/

,.,....t~..~. .;-

' '.,
/

/ *
/

""

I

*

--- - * /







'



- " / --!
~

....

N

~I

z. IN MUSCOVITE
* 92 - 22, ."'
. 70 - A9 ...
4 - 6g

SCALE

0

~

L_

I

10 KM

Figure 28. Map of the distribution of Zn in muscovite. Results (Appendix II) indicate that the highest Zn values (stars and squares outlined by the dashed lines) occur mainly in the central part of the district and in the Indian Grave field to the northwest The location of the kyanite-sillimanite isograd, the Towaliga and Goat Rock faults are shown for comparison.

..,. -....
., * I ,., /.



-~~,/





,




,. /

. \


/

. ,....

/. \

/

/

/ I/-'""' I

/

~

{"/



.", '/ '

bORSYTH

/

/

.... \
I*": 1

- , /. /



/ /

,/,.., /

I



I /

/

w.a:.

JJ~'~

. *"'

. /

.....

I*
' /
*,.,

....

/

/

/
~

/





... I

,



,.~ ;

N
~~

*Ralk 0 ,,. PW)((IYJTE 84 - 168 60 - 78 25 - 59

SCALE

0

5

JO ltM

Figure 29. Map ofthe distribution ofRbiK20 in muscovite. Results (Appendix II) indicate that the highestRb~O ratios (stars and squares outlined by the dashed lines) occur mainly in the central part of the district and in the Indian Grave field to the northwest. The location of the kyanite-sillimanite isograd, the Towaliga and Goat Rock faults are shown for comparison.

......

- ' '

*

\ I

I I *
/ I
/ /
BARNESVILLE


* *

*'\ I



*

*
*


.......

.......

*

*" ' '
*' ......

w
(,11

---- /

./ I

I

-I /

TH~S;j)

/t 1-\ ,' ,'*I ~FORSVT~

* *

,..
*/ '

I I*
\

\

- I **'/

\ * '*

I I

.,.., I

"'f , ' / I

'* /

tI/ , - \

"'

\

\ \

I

I

. / /
/



I
i*

.;. . '* /

*

**

1 I

'
/l

,.
/-r _

,*j.,~.,.\.,

~ *

*


*

* IARJUH 1H MUSCOVITE 400 1456

200 - ]99 PP:t

e

4S 199

N

~

I

SCALE

0

i

t__ ________1___

10 ..11:
'

Figure 30. Map of the distribution of Ba in muscovite. Results (Appendix II) indicate that the highest Ba values (stars) occur mainly surrounding the central part ofthe districtand several pegmatite fields to thenorthwest. Thedashed lines outline areas oflow Ba (circles and squares). The location ofthekyanite-sillimanite isograd, the Towaliga and Goat Rock faults are shown for comparison.

I

I I *



/

* , .
*

I

'- .... *


I

*

... *

t



I

~RSHK



I

I

'1 *

""

I I

w
C)

-

I
.. .,. /

/

/ ' /*./

-

*

I

*

- I

- . .. *

lJSlOH *' ,'.* 0 * / . /



/

- -;. /
,.. I~

/
,;

I
/

..,...-
.,cf v /
~ ~
/:;;-
-

........
'

*

*.

*

**

.;*

-.e~t:~

*e.. ,._ IN HIISCOVITE 1 00- S.S9 D ~ 40 - 0 . 99

N

0 . 02 0 39

~I

0

SCALE 5

JD KM

Figure 31. Map of the distribution of Ba/Rb in muscovite. Results (Appendix IT) indicate that the highest Ba/Rb ratios (stars and squares) generally surround the central part of the district and several pegmatite fields to the northwest and southeast. The lower ratios are outlined by dashed lines. The location of the kyanitesillimanite isograd, the Towaliga and Goat Rock faults are shown for comparison.

I

C...o..)

/'-.

I* \
./ /

/

/

/

..

. . -'

. . ; ,,I....*... /



---/ /

RJ./ --- '*

/

-/

'"""lSVJllE

/

.. -~~= './ 4

/

- - /

/

./
;;.;;* ~
/



/

..,., /

~.

/


......
\








....
*/

/
I

JJST~
.. .......

/.
\I * / ./
-
-........
. *,-- .~
- ....,

x-' ... I

""'* ,-&:

I

* 101 161 .,...

30-89

I

N

<1-29-..

~I

0

SCAL
s

10 KM

Figure 32. Map of the distribution of V in muscovite. Results (Appendix II) indicate that the highest V values (stars and squares outlined by dashed lines) occur
mainly in three northeast-trending bands through the central partofthedistrictandadjacentto the Towaligaand GoatRock faults. The location ofthekyanite-sillimanite isograd, the Towaliga and Goat Rock faults are shown for comparison.

values are concentrated towards the northeast corner of the district.
DISCUSSION OF PEGMATITIC MUSCOVITE GEOCHEMICAL ZONING
The regional geochemical maps of the ThomastonBarnesville district appear to show three distinct trends. Two trends indicate a district-scale zoning which is centered on a "core" of beryl- and schorl tourmaline-bearing pegmatites. One group of elements (F, Li, Rb, Nb, Ta, Zn and Be) are enriched in pegmatitic muscovite in the core of the district, with the lowest geochemical values distributed distally to the core (Figures 22 to 28). A second zone consisting of several scattered pegmatite fields in the northwestern part of the district is also generally enriched in these elements. The predominant orientation of the anomalously high central zone is to the northeast and is generally parallel to the kyanite -sillimanite isograd (Cocker, 1991 ). A second pattern which is illustrated by Ba (Figure 30), is essentially opposite to that of the above trend with higher values peripheral to the core. The third pattern is that of higher V which trends northeast across the kyanite - sillimanite isograd (Figure 32).
The two centrally zoned patterns that are discussed abovemayreflectarelationshipofpegmatitechemistrywith pressure-temperature conditions reflected by the kyanite sillimanite isograd. The trend toward greater enrichment in F, Li, Rb, Nb, Ta, Zn and Be in pegmatitic muscovite from sillimanite grade conditions to kyani te grade conditions is in agreement with the trends shown in Figure 33 as suggested by Cerny (1982a) and Gunow and Bonn (1989). Because of uncertainties in the absolute ages of the kyanitc-sillimanite metamorphism and of the pcgmatites, however, these spatial relationships do not prove a genetic relationship.
The more northeasterly-trending pattern exhibited by V may reflect a host-rock compositional influence. The refolded nappe structures suggested by Schamel and others (1980) and Scars and Cook (1984) for the Pine Mountain terrane may extend along the V trends.
The geochemical trends depicted on the Rb/K20 and the Ba/Rb maps may be related to: 1) the increasing concentration of Rb in pcgmatitic fluids with increasing fracl.ionation, 2) the removal ofBa in pegmatitic fluids in the earlier formed pegmatites, and 3) the relatively constant removal of K20 to form feldspar and muscovite.
A variety of factors suggested by Cerny (1982b) may control regional pegmatite zoning:
1. Volatiles such as Li, P, B, and F lower the solidus temperatures of granitic melts significantly more than the solidus temperature of a H20-saturated granil.ic magma. The simultaneous injection of volatile-rich and volatilepoor pcgmatitic magmas along a temperature gradient will result in the more fractionated pegmatitcs crystallizing at

lower temperatures, farther from the source.
2. The immiscibility ofF-rich and normal granitic melts may cause the differentiation ofa single injection into immiscible liquids with the most mobile, generally the most F-rich magma, migrating the farthest distance down a temperature or pressure gradient.
3. Progressive fracturing around a cooling pluton, either due to cooling or to an increase in magmatic or fluid pressure may be accompanied by multiple episodes of pegrnatitic melt injection. The continued differentiation of the source magma will produce increasingly fractionated residual pegmatitic melts.
4. Resurgent boiling in the source magma will result in a tremendous increase in the partial vapor pressure of the volatile-oversaturated, highly fractionated pegmatite melts producing a major driving mechanism to move the fractionated melt out and away from the crystallizing magma.
As a source intrusion for the pegmatites has not been either identified or proven, the factors which controlled the pegmatite fractionation in the Thomaston-Barnesville district cannot be identified beyond those suggested above by Cerny (1982b).
FELDSPAR GEOCHEMISTRY
This discussion of feldspar geochemistry is based on geochemical analyses of 44 feldspar samples which are contained in Appendix III. Scatter plots and geochemical maps for the feldspar analyses were not constructed. Most of the feldspar samples are K20-rich (8 to 14 weight percent) and Na20- (0.5 to 3.2 weight percent) and CaO- (0.01 to 0.5 weight percent) poor. A few samples are sodic-rich (up to8.0 weight percent) and contain up to 4.3 weight percent CaO. Samples which contain relatively low K20, Na20 and CaO values relative to the other feldspar samples apparently reflect the effects of chemical weathering on those feldspar samples.
GENESIS OF THE THOMASTON-BARNESVILLE PEGMATITES
PHYSICAL CONDITIONS
Silicate melts of granitic composition may be derived by anatexis of high-grade metamorphic rocks or by igneous fractionation from granitic intrusions. While it is generally assumed that granites are the sources for most pegmatites, a source granite is commonly not readily apparent for the mica-bearing pegmatites and the maximal depth pegmatites

38

10 9 8
7
6
-..:..0:. 5
a..
4 3 2 1 0
300

-c.:.

I~
.0
I

li s=~~ ....

:O:cE~
iii
l

r:::J (U



I




I



I




1

,.......
B._,
(l)
.,,~-: 7~1 ..... ..a .. ~ ~
\~Ui~ ~

~-A~~'~l0l~~0
$'




400

500

600

700

800

T(OC)

Figure 33. Relation of pegmatites to metamorphic facies series. The most common location of the various types ofpegmatites are shown in relation to the various metamorphic index minerals, the granite liquidus and solidus, the pressure and temperature conditions defined by the metamorphic index minerals, and two geothermal gradients (25C/km and 50C/km). The upper arrow shows the general position of the maximal depth (feldspar), the beryl-poor muscovite, and the beryl-rich muscovite (Be) pegmatites. The lower arrow depicts the locations of the rare-element pegmatites (Be, Li, Ta, Cs) generally occurring under lower pressure conditions than the maximal depth and muscovite pegmatites. Miarolitic pegmatites would occur at still lower temperatures beneath the rare-element arrow. Diagram is modified from Cerny (1982b), Gunow and Bonn (1989) and Cocker (1992).

39

(Cerny,1982b). A nearby granite is commonly misidentified as being the source intrusion for the mica-bearing pegmatites and the maximal depth pegmatites.
Maximal depth pegmatites and mica-bearingpegmatites are principally developed in high-grade metamorphic terranes, and can be related to each other within a metamorphic series (Figure 33). Maximal depth pegmatites may be formed during anatexis associated with upper amphibolite and granulite grade metamorphism. Mica-bearing pegmatites are believed to be distal to pegmatoid granites located in the cores of migmatite domes in Barrovian-type metamorphic terranes. These granites are believed to be anatectic, nearautochthonous rocks. Igneous fractionation within these granites is thought to be minimal (Cerny,1982b). Derivation of a pegmatitic liquid that produced the rare-metal Greenbushes pegmatite (Partington, 1990) suggests that igneous fractionation may be important in some cases.
The rare-element pegmatites are commonly related to equigranular to porphyritic, generally small to moderate size, late- to post-tectonic granites of calc-alkaline intrusive sequences. Geochemical and mineralogical compositions indicate that the source granites are derived from considerably fractionated melts (Cerny, 1982b). These pegmatites are generally developed in lower pressure, high temperature Abukuma-type metamorphic terranes (Figure 33). The giant rare-metal Greenbushes pegmatite in Western Australia was emplaced under higher pressure conditions more indicative of the muscovite class ofpegmatites (Partington, 1990). The Greenbushes pegmatite has not been associated with any granitoid intrusion. This notable exception suggests that other rare-metal pegmatites may occur within high-pressure metamorphic terranes.
SOURCE OF THE PEGMATITES
Prior to the current availability of geochemical and isotopic data and the introduction of the Russian expertise on regional pegmatite zoning (Cerny, 1982a, 1982b), the close spatial relationship of a granitic body to pegmatites was considered to be convincing evidence ofa genetic link. Jahns and others (1952) noted that some mica-bearing pegmatites are spatially close to granitic intrusions in the southeastern Piedmont of the United States. However, within the Georgia Piedmont and Blue Ridge pegmatite belts, the pegmatite districts are not spatially associated with any of the exposed granitic intrusions (Figure 11). Because no granitic intrusions are exposed within the Thomaston-Barnesville district, the source of the pegmatites is unknown.
The similarity in ages (256 to 296 m.y.) ofthe pegmatites in the Thomaston-Barnesville district (Deuser and Herzog, 1962) and the ages (265 to 325 m.y.) of presently exposed granitic intrusions in the southeastern Piedmont (Fullagar and Butler, 1979) suggest that the pegmatites in the Thomaston-Barnesville district may be related to the same

period of late Paleozoic granitic activity. The geochemical and mineralogic zoning in the
Thomaston-Barnesville district are apparently spatially related to the regional metamorphic zoning, but no direct genetic or temporal links are apparent The overlapping of the district's geochemical and mineralogic zoning across the major terrane boundaries, and the cutting of pegmatites across the metamorphic fabric ofthe district indicate that the pegmatites are younger than the tectonic and metamorphic events represented by those features. Although the precise ages of the pegmatites is unknown, the available age dates for the pegmatites support an age for the pegmatites which is clearly younger age than the youngest peak metamorphic event dated at about 360 m.y. (Odum and others, 1982).
The relationship between the district mineralogic and geochemical zoning and the metamorphic zoning may suggest that the pressure and temperature conditions which existed during peak metamorphism continued at or near those levels up to the time of pegmatite emplacement. Another explanation may be that similar pressure and temperature conditions were attained during the emplacement of a source granitic intrusion for the pegmatites. Neither of these two explanations can be substantiated with the presently available data.
ECONOMIC POTENTIAL OF THE THOMASTONBARNESVILLE PEGMATITE DISTRICT
RARE METALS
District-scale mineralogic and geochemical zoning indicates that significant fractionation occurred during the development of the pegmatites within the ThomastonBarnesville district. Pegmatites contain higher concentrations of incompatible trace elements and rare metals within the central part of this district. Despite the greater fractionation trends exhibited by these pegmatites, most muscovites from the Thomaston-Barnesville district have lower Be, Li, Nb, and Rb concentrations than muscovites from beryl-rich pegmatites within the Ball Ground field of the CherokeePickens district (Gunow and Bonn, 1989). Muscovite from the Cochran mine in the Ball Ground field is generally higher in Be, Li, Nb and Rb than other muscovite reported from the Cherokee-Pickens district. The Cochran mine has yielded a considerable amount of beryl ore (J. Connor, personal communication, 1990).
The pegmatites in the Thomaston-Barnesville district which appear to have the greatest potential for rare metals based on the trace-element contentof their muscovite appear to be the Adams, Battles, Colbert, Earley Vaughn, Partridge, Phinazee, Reynolds, and Walker mines, the Manrey, Redding and Thompson prospects.

40

MICA
Pegmatites within the Thomaston-Barnesville district have been the best source of sheet mica in the southeastern Piedmont of the United States. The potential exists for additional development of these pegmatites for their mica content. Many of the larger pegmatite mines appear to have a significant volume of scrap mica on their dumps. Many pegmatites in this district have been mined only to the lowest level of saprolite development and have not been mined out. In addition, concentrations of the large pegmatites suggests that other large pegmatites may be found nearby.
The largest or more important mines in the district, based on the recorded size or the present pit or dump size, appear to be concentrated in two principal areas and several scattered singular occurrences. The two largest groups occur mainly within Upson County. One group consisting of the Adams, Stevens Rock, Johnson, Reynolds, Battle, Rev. Thadeus Persons, and Herron mines forms a rough oval in the Yatesville field generally centered on Yatesville. The other group consisting of the Brown, Mauldin, Old Atwater, Swift Creek, Dallas, Watson, Bennie Baron, Mitchell Creek, Boyt, Wheeles, Duke, and Joe Persons mines in the Waymanville field forms an east-northeast trending belt approximately 5 kilometers south of Thomaston. The other mines(theDoc Irwin, Earley Vaughn, Thurman,New Ground and Old Walker Smith, Brooks, and Fletcher mines) occur in the vicinity of other pegmatites which have not been exploited to the extent of the larger mines. The New Ground and Old Walker Smith mines, which occur in close proximity to each other in the Juliette field, do not appear to have been prospected during the World War II era.
Location of additional pegmatites along the trends of the two large groups would appear favorable. Mica-rich pegmatites occur up to at least 20 kilometers to the southwest of the Brown mine at the southwestern end of the belt south of Thomaston. This area is sparsely inhabited, has few roads and appears not to have been the subject of any mica investigations. The area near Yatesvi lie also would appear to have the potential for additional mica-rich pegmatites.
FELDSPAR
In addition to quartz and muscovite, pegmatites within the Thomaston-Barnesville district contain minor amounts of feldspar. The feldspar is generally weathered to clay at least to the lowest level of mining. Occasionally, fresh feldspar is present at or near the surface and could be mined. The relatively small size of most of the pegmatites which contain fresh feldspar would not appear to support a major development effort at this time.

SUMMARY
The Thomaston-Barnesville district in central Georgia is the largest pegmatite district in Georgia and has produced the largest amount of sheet mica in the southeastern Piedmont of the United States. The present investigation focussed on the evaluation of the rare-metal bearing potential of the pegmatites in the Thomaston-Barnesville district. Ratios, scatter plots and district-scale geochemical maps of trace elements in muscovite were used: 1) to evaluate each individual pegmatite within the district; 2) to evaluate the district as a whole geochemical system to determine if this district could contain important rare-element bearing pegmatites; and 3) to identify the location of undiscovered important rare-element bearing pegmatites within the district.
The relatively pronounced increases in the concentrations ofF, Li, Be, Ga, Nb, Ta, Rb and Zn in muscovite in the Thomaston-Barnesville district indicates an increase in the degree of fractionation of the pegmatites. District-scale geochemical maps indicate higher concentrations of the trace elements: F, Li, Be, Ga, Nb, Ta, Rb andZn in muscovite occur within a central zone of pegmatites that also contain beryl and commonly schorl tourmaline. Other trace elements, such as Ba, are concentrated peripherally to the central part of the district. The distribution of V and other trace elements may be influenced by lithologic or structural controls.
The regional geochemical zoning is superimposed on the presently known regional metamorphic gradient. The central zone, with high F, Li, Be, Ga. Nb, Ta, Rb and Zn, is generally contained within the kyanite facies. The outer high Ba and high V zones overlap the kyanite - sillimanite isograd. The lack of any visible granitic intrusions within this district and the spatial relation of the regional geochemical zoning and the metamorphic gradient suggests that the pegmatites within this district may be related to a regional thermal metamorphic event. Because this district' spegmatites extend beyond the major structural boundaries enclosing the Pine Mountain terrane, and the pegmatites cross-cut the regional metamorphic foliation, the pegmatites were probably emplaced after the latest episode of penetrative deformation. The few age dates available for pegmatites within the Thomaston-Barnesville district appear to correlate with the timing of post-orogenic granitic activity elsewhere in Georgia. It is suggested that the pegmatites within the Thomaston-Barnesville district are related to a still buried, late-stage or post-orogenic granitic batholith.
The results of this investigation suggest that the Thomaston-Barnesville district has a reasonably high potential for additional sheet mica, and scrap or punch mica deposits, but has a marginal potential for rare-element pegmatite deposits. When compared to other pegmatites in Georgia and pegmatites in other parts of the world which

41

have economic concentrations of trace elements, the geochemical signatures of the most fractionated pegmatites in the Thomaston-Barnesville district indicate that local enrichment occurred; however, economic concentrations may not have been achieved. The feldspar potential of this district is low because of: 1) the extensive near-surface weathering; 2) the relatively small size of mostofthis district's pegmatites; and 3) the pegmatites in this district are in the muscovite class and rather than the maximal depth (feldspar-rich) pegmatite class.
REFERENCES CITED
Beck, W.A., 1948, Georgia mica spots, Cherokee, Upson, Lamar and Monroe Counties, United States Bureau of Mines Report of Investigations 4239, 29 pp. plus figures.
Cameron, E.N., Jahns, R.H., McNair, A. and Page, L.R., 1949, Internal structure of granitic pegmatites: Eco-
nomic Geology Monograph 2. 115 pp.
Cerny, P., 1982a, Anatomy and classification of granitic pegmatites: in Cerny, P. (ed.), Short Course in Granitic Pegmatites in Science and Industry, Mineralogical Association of Canada, v. 8, p. 1-40.
Cerny, P., 1982b, Petrogenesis of granitic pegmatites: in Cerny, P. (ed.), Short Course in Granitic Pegmatites in Science and Industry, Mineralogical Association of Canada, p. 405-462.
Cerny, P. and Burt, D.M., 1984, Paragenesis, crystallochemical characteristics, and geochemical evolution of micas in granite pegmatites: in Bailey, S.W., ed., Micas: Mineralogical Society of America, Reviews in Mineralogy, v. 13, p. 257-297.
Cerny, P., Goad, B.E., Hawthorne, F.C., Chapman, 1986, Fractionation trends of the Nb- and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba: American Mineralogist, v. 71, no. 3 and 4, p. 501-517.
Clarke, J.W., 1952, Geology and mineral resources of the Thomaston Quadrangle, Georgia: Georgia Geologic Survey Bulletin 59, 103 pp.
Cocker, 1990, Pegmatite investigations in Georgia: 26th Forum on the Geology of Industrial Minerals (abstract).

Cocker, 1991, Geochemical zoning in muscovites from the Thomaston-Barnesville pegmatite district, Georgia: Geological Society of America Abstracts with Programs, v. 23, no. 1, p. 17.
Cocker, 1992, Pegmatite investigations in Georgia: Proceedings 26th Forum on the Geology of Industrial Minerals: in Sweet, P.C., ed., Virginia Division of Mineral Resources Bulletin 119, p.103-lll.
Davis, L.L., 1988, Mica: United States Bureau of Mines, Minerals Yearbook 1985, Vol. 1, p. 673-680.
Deuser, W.G., and Herzog, L.F., 1962, Rubidium-strontium age detenninations of muscovites and biotites of the Blue Ridge and Piedmont, Journal of Geophysical Research, v. 67, p. 1998-2003.
El Bouseily, R.M., and El Sokkary, A.A., 1975, The relation between Rb, Ba, and Sr in granitic rocks: Chemical Geology, v.16, p. 207-219.
Foard, E.E., and Cook, Robert B., 1989, Mineralogy and paragenesis of the McAllister Sn-Ta-bearing pegmatite, Coosa County, Alabama: Canadian Mineralogist, v. 27, p. 93-105.
Fullagar, P.D., and Butler, R.J., 1979, 325 to 265 M.Y.-old granitic plutons in the Piedmont of the southeastern Appalachians, American Journal of Science, v. 279, p. 161-185.
Furcron, A.S., 1959, Beryl in Georgia: Georgia Mineral Newsletter, v. 12, no. 3, p. 91-95.
Furcron, A.S., and Chancey, C.N., 1954, The Minerals Processing Company Mine and other beryl deposits in Troup County, Georgia: Georgia Mineral Newsletter, v. 7, no. 4, p. 91-95.
Furcron, A.S., and Teague, K.H., 1943, Mica-bearing pegmatites of Georgia: Georgia Geological Survey Bulletin 48, 192 pp.
Galpin, S.L., 1915, Apreliminary report on the feldspar and mica deposits of Georgia: Georgia Geologic Survey Bulletin 30, 190 pp.
Ginsburg, A.l., Tinofeyev, I.N., and Feldman, L.G., 1979, Principles of geology of the granitic pegmatites: Nedra Moscow, 296 pp.
Grant, W.H., 1967, ThegeologyoftheBamesvilleareaand Towaliga Fault, Lamar County, Georgia: Georgia

42

Geological Society Second Annual Field Trip Guidebook, 16pp.
Gunow, AJ., and Bonn, G.N., 1989, The geochemistry and origin of pegmatites, Cherokee-Pickens district, Georgia: Georgia Geologic Survey Bulletin 103, 93 pp.
Hanley, T.B., 1986, Petrography and structural geology of Uchee belt rocks in Columbus, Georgia and Phenix City, Alabama: Geological Society of America Centennial Field Guide, Southeastern Section, v. 6, p. 297-300.
Hatcher, R.D., Jr., Osher, P.H., Drake, A.A., Jr., Robinson, P., and Thomas, W.A., 1989, Tectonic map of the
U.S. Appalachians: in Hatcher, R.D., Jr., Thomas,
W.A., and Viele, G.W., eds., The AppalachianOuachita Orogen in the United States: Boulder, Colorado, The Geological Society of America, The Geology of North America, Vol. F-2, Plate I.
Hatcher, R.D., Jr., Thomas, W.A., Geiser, P.A., Snoke, A.W., Mosher, S., Wiltschko, D.V., 1989, Alleghanian orogen: in Hatcher, R.D., Jr., Thomas, W.A., and Viele, G.W., eds., The AppalachianOuachita Orogen in the United States: Boulder, Colorado, The Geologica] Society of America, The Geology of North America, Volume F-2, p. 233-318.
Heinrich, E.W ., Klepper, M.R., and Jahns, R.H., 1953, Mica deposits of the Southeastern Piedmont, Part 9. Thomaston- Barnesville District, Georgia, and Part 10. Outlying Deposits in Georgia: United States Geological Survey Professional Paper 248F, p. 327-400.
Hewett, D.F., and Crickmay, G.W., 1937,TheWarm Springs of Georgia, their geologic relations and origin, a summary report: United States Geological Survey Water Supply Paper 819,40 pp.
Higgins, M.W., Atkins, R.L., Crawford, TJ., Crawford, R.F., III, Brooks, R., and Cook, R.B., 1988, The structure, stratigraphy, tectonostratigraphy, and evolution of the southernmostpartof the Appalachian orogen: United States Geological Survey Professional Paper 1475, 173 pp.
Hooper, RJ., 1986, Geologic studies at the east end of the Pine Mountain Window and adjacent Piedmont, Central Georgia: Unpublished report for the Georgia Geologic Survey, Contract Number 701-390148, 322 pp.
Hooper, R. J. and Hatcher, R.D., Jr., 1989, The geology of

the east end ofthe Pine Mountain Window and adjacent Piedmont, central Georgia (Geologica] Society of America Southeastern Section Guidebook): Georgia Geological Society, p. 1-37.
Jahns, R.H., 1955, The study of pegmatites: Economic Geology, 50th Anniversary Volume- 1955, p. 10251130.
Jahns, R.H., 1982, Internal evolution ofgranitic pegmatites,
in Cerny, P. (ed.), Short Course in Granitic Pegmatites
in Science and Industry: Mineralogical Association of Canada, p. 463-494.
Jahns, R.H. and Lancaster, R.W., 1950, Physical characteristics of commercial sheet muscovite in the Southeastern United States: United States Geological Survey Professional Paper 225, 110 pp.
Jahns, R.H., Griffitts, W.R., Heinrich, E.W., 1952, Mica Deposits of the Southeastern Piedmont, Part 1. General Features: UnitedStates Geological Survey Professional Paper 248-A, p. 1-102.
Jahns,R.H.,andEwing,R.C., 1976, The Harding mine, Taos County, New Mexico: New Mexico Geological Society Guidebook, 27th Field Conference, Vennejo Park, p. 263-276.
Jones, L.M., Carpenter, R.H., and Whitney, J.A., 1974, Rubidium-strontium age and origin of the pegmatites associated with the Gladesville norite, Jasper County, Georgia: Geological Society of America Abstracts with Programs, v. 6, No.4, p. 369.
Koch, G.S., Koch, R.S., Kapatov, A., 1984 and 1987, Geologic Atlas of Georgia - An atlas of mine workings, quarries, and prospects in part of northern Georgia: Georgia Geologic Survey Open File Atlas, on open file, 7.5" quadrangle maps and unpaginated listings.
Matthews, III, V., 1967, Geology and petrology of the pegmatite district in southwestern Jasper County, Georgia: University of Georgia, unpublished M.S. thesis, 68 pp.
Odum, A.L., Hatcher, R.D., Jr., and Hooper, RJ., 1982, A pre-metamorphic tectonic boundary between contrasting Appalachian basements, southern Georgia Piedmont: Geological Society of America Abstracts with Programs, v. 14, p. 579.
Partington,G.A.,1990,Environmentandstructuralcontrols on the intrusion of the giant rare metal Greenbushes

43

pegmatite, Western Australia: Economic Geology, v. 85, p. 437-456.
Rankin, D.W., Drake, Jr., A.A., Glover III, L., Goldsmith, R., Hall, L.M., Murray, D.P., Ratcliffe, N.M., Read, J.F., Secor, Jr., D.T., Stanley, R.S., 1989, Preorogenic terranes: in Hatcher, R.D., Jr., Thomas, W.A., and Viele, G.W., eds., The Appalachian-Ouachita Orogen in the United States: Boulder, Colorado, The Geological Society of America, The Geology ofNorth America, Vol. F-2, p. 7-100.
Rinaldi, R., Cerny, P., and Ferguson, R.B., 1972, The Tanco pegmatite at Bernie Lake, Manitoba. VI Lithiumrubidium-cesium micas: Canadian Mineralogist, v. 11, p. 690-707.
Schamel, S.,Hanley, T.B., Sears,J.W., 1980, Geology of the Pine Mountain Window and adjacent terranes in the Piedmont Province of Alabama and Georgia: Geological Society of America Guidebook: The Geological Society of America 29th Annual Meeting, p. 1-69.
Sears, J.W., and Cook, R.B., Jr., 1984, An overview of the Grenville basement complex of the Pine Mountain
window, Alabama and Georgia, in Bartholomew, M.J.,
(cd.), The Grenville event in the Appalachians and related topics: Geological Society of America Special Paper 194, p. 281-287.
Shmakin, B.M., 1984, Geochemistry and origin of granitic pegmatites: Geochemistry International, v. 21, p. 1-8.
Smith, J.W., Wampler, J.M., Green, M.A., 1969, Isotopic dating and metamorphic isograds of the crystalline rocks of Georgia: Precambrian-Paleozoic Appalachian Problems: Georgia Department of Mines, Mining and Geology Bulletin 80, p. 121-139.
Smith, R.W., 1931-1933, Notes on mien deposits in Georgia: Unpublished Data, Files of the Georgia Geologic Survey.
Stieve, A.L., 1984, Petrologic variation of the granulites and related gneisses of Pine Mountain terrane, Georgia: Emory University, unpublished M.S. thesis, 107 pp.
Truemnn, D.L., and Cerny, P., 1982, Exploration for rare-
clement granitic pegmatitcs: in Cerny, P. (ed.), Short
Course in Granitic Pegmatites in Science and Industry, Mineralogical Association of Canada, v. 8, p. 463-494.
Whitlach, G.I., Choquette, J.A., Husted, J.E., and Benton, N.H., 1962, Georgia's Mineral Resources: A summary

ofavailable data on their past, present and future status: Georgia Institute of Technology publication, 130 pp.
Whitney, J.A., Jones, L.M., and Walker, R.L., 1976, Age and origin of the Stone Mountain granite, Lithonia District, Georgia: Geological Society of America Bulletin, v. 82, p. 2827-2844.

44

APPENDICES
45

46

APPENDIX I.

LOCATIONS OF PEGMATITE MINES. PROSPECTS. SAMPLES

Mine/Prosp ecVLocation

Sample Number

Easting

Northing

Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Mrs. Taylor prospect Mrs. Taylor prospect Brown property Brown property Lamar Co. roadcut Doc Irwin mine Doc Irwin mine Lamar Co. roadcut Coggins prospect Coggins prospect Coggins prospect Coggins prospect Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lassiter Rd. outcrop Lassiter Rd. outcrop Lassiter Rd. outcrop Monroe Co. roadcut MVmine MVmine unnamed mine Goggins prospect Goggins prospect Goggins prospect Butts Co. roadcut Butts Co. roadcut Butts Co. roadcut Westbrooks prospect Westbrooks prospect Westbrooks prospect Westbrooks prospect Westbrooks prospect Monroe Co. roadcut Monroe Co. roadcut

348-1 348-2 348-3 348-4 349-1 349-2 349-3 349-4 349-5 349-6 349-7 349-8 349-9 349-10 349-11 349-12 349-13 349-14 349-15 349-16 349-17 349-18 349-19 349-20 349-21 349-22 349-23 351-1 351-2 351-3 351-4 351-5 351-6 351-7 351-8 351-9 351-10 351-11 351-12 351-13 351-14 351-15 351-16 351-17 351-18 351-19 351-20

756120 756120 756120 756120 768180 768180 759270 759270 759240 759330 759330 762550 760150 760150 760150 760150 758400 758400 758400 757900 757700 757700 757830 757830 757400 756950 756950 227600 227600 227600 225680 225800 225800 226150 231600 231600 231600 228580 229980 229980 223100 223100 223100 223100
223100 222670 222670

3669980 3669980 3669980 3669980 3669800 3669800 3670940 3670940 3671250 3672320 3672320 3670900 3672550 3672550 3672550 3672550 3672720 3672720 3672720 3672720 3672260 3672260 3670290 3670290 3670220 3670230 3670230 3674850 3674850 3674850 3674900 3672140 3672140 3671150 3672100 3672100 3672100 3681930 3682080 3682080 3674560 3674560 3674560 3674560 3674560 3671990 3671990

47

Monroe Co. roadcut Monroe Co. roadcut Monroe Co. roadcut Marie Vaughn mine Marie Vaughn mine Marie Vaughn mine Sutton prospect Sutton prospect Monroe Co. roadcut Monroe Co. roadcut Monroe Co. roadcut Goddard+ Watson prospect Goddard+ Watson prospect Goddard+ Watson prospect Goddard+ Watson prospect Goddard +Watson prospect Goddard+ Watson prospect Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Jasper Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Pike Co. roadcut Hog Mtn. roadcut H.S. Worsham prospect Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Means prospect

APPENDIX I. (cont.)
351-21 351-22 351-23 351-24 351-25 351-26 351-27 351-28 351-29 351-30 351-31 352-29 352-30 352-31 352-32 352-33 352-34 352-35 352-36 352-37 352-38 352-39 352-48 352-49 352-50 352-51 352-52 352-53 352-54 352-55 352-56 376-1 376-2 376-3 376-4 376-5 376-6 376-7 376-8 376-9 376-10 376-11 376-12 376-13 378-1 378-2 378-3 378-4 378-5 378-6 378-7 379-1

222670 222230 222230 221920 221920 221920 223800 223800 224200 228200 228200 232510 232510 232510 232510 232440 232440 240850 240850 240850 240850 240850 242030 242030 242030 243400 243400 243400 243400 233250 233250 742700 742430 740650 740650 740600 740600 739220 739220 739220 739220 739170 738400 738400 766920 767220 768000 768000 764200 762780 762780 771380

48

3671990 3672100 3672100 3670330 3670330 3670330 3671950 3671950 3673150 3672800 3672800 3673670 3673670 3673670 3673670 3673600 3673600 3675230 3675230 3675230 3675230 3675230 3677180 3677180 3677180 3678250 3678250 3678250 3678250 3671800 3671800 3662950 3662870 3661650 3661650 3661650 3661650 3661430 3661430 3661430 3661430 3660430 3657470 3657470 3662400 3662400 3664510 3664510 3662400 3662180 3662180 3658200

Means prospect Means prospect Means prospect Earley Vaughn mine Earley Vaughn mine Earley Vaughn mine Earley Vaughn mine Earley Vaughn mine Earley Vaughn mine Earley Vaughn mine Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut Lamar Co. roadcut H.P. Manrey prospect H.P. Manrey prospect H.P. Manrey prospect Lamar Co. float Lamar Co. float Old Childs mine Old Childs mine Monroe Co. float Ingraham prospect Ingraham prospect Ingraham prospect Lamar Co. roadcut Thurman mine Thurman mine Thurman mine Thurman mine Thurman mine Thurman mine Monroe Co. roadcut Phinazee mines west Phinazee mines west Monroe Co. roadcut Goodwin prospect Goodwin prospect Goodwin prospect Redding prospect Redding prospect Redding prospect Redding prospect New Ground mine New Ground mine Old Walker Smith mine Old Walker Smith mine Monroe Co. roadcut Monroe Co. roadcut

APPENDIX I. (cont.)
379-2 379-3 379-4 379-5 379-6 379-7 379-8 379-9 379-10 379-11 379-12 379-13 379-14 379-15 379-16 379-17 379-18 379-19 379-20 379-21 379-22 379-23 379-24 379-25 379-26 379-27 379-28 379-29 379-30 380-1 380-2 380-3 380-4 380-5 380-6 380-7 380-8 380-9 380-10 380-11 380-12 380-13 381-1 381-2 381-3 381-4 381-5 381-6 381-7 381-8 381-9 381-10

771380 771380 771380 771350 771350 771350 771350 771350 771350 771350 769570 769570 769570 769570 769570 773610 773610 775300 775300 775300 771620 772250 775030 775030 778100 775780 775780 775780 773000 220940 220940 220940 220860 220860 220860 221670 219880 219880 226120 221350 221350 221350 237020 237020 237020 237020 236500 236500 236550 236550 236500 236550

49

3658200 3658200 3658200 3658370 3658370 3658370 3658370 3658370 3658370 3658370 3665570 3665570 3665570 3665570 3665570 3663930 3663930 3662270 3662270 3662270 3657340 3657660 3658570 3658570 3658600 3658350 3658350 3658350 3658540 3656270 3656270 3656270 3656300 3656300 3656300 3661340 3659000 3659000 3664560 3658640 3658640 3658640 3664550 3664550 3664550 3664550 3664670 3664670 3664870 3664870 3664670 3664100

Monroe Co. roadcut Monroe Co. roadcut Monroe Co. roadcut Thompson prospect Thompson prospect Thompson prospect Thompson prospect Thompson prospect Partridge mine Upsom Co. roadcut Parteidge mine Adams mine Adams mine Adams mine Adams mine Adams mine Adams mine Walker prospect Colbert mine area Colbert mine area Upson Co. roadcut Upson Co. roadcut Upson Co. roadcut Stevens Rock mine Stevens Rock mine Stevens Rock mine Stevens Rock mine Stevens Rock mine Stevens Rock mine Upson Co. roadcut Upson Co. roadcut Upson Co. roadcut Upson Co. roadcut Walker prospect Walker prospect Clay Cheek mine Clay Check mine Clay Cheek mine Upson Co. outcrop Upson Co. outcrop Upson Co. outcrop Johnson mine roadcut Johnson mine roadcut Reynolds mine Reynolds mine Reynolds mine Reynolds mine Johnson mine Kelley O'Neal prospects Peters mine Peters mine Peters mine

APPENDIX I. (cont.)
381-11 381-12 381-13 408-1 408-2 408-3 408-4 408-5 408-6 408-7 408-8 409-1 409-2 409-3 409-4 409-5 409-6 409-7 409-8 409-9 409-10 409-11 409"12 409-13 409-14 409-15 409-16 409-17 409-18 409-19 409-20 409-21 409-22 409-23 409-24 409-25 409-26 409-27 409-28 409-29 409-30 409-31 409-32 409-33 409-34 409-35 409-36 409-37 409-38 410-1 410-2 410-3

236550 236500 241820 747500 747500 747500 747500 747500 747470 747300 747470 767480 767480 767480 767480 767480 767480 766800 763260 763260 758000 758640 758640 761370 761370 761370 761370 761370 761370 762820 762850 762880 758250 766800 766800 766830 766830 766830 768120 768120 767610 768040 768040 763470 763470 763470 763470 767570 767590 777300 777300 777300

50

3664100 3664060 3656130 3651370 3651370 3651370 3651370 3651370 3651400 3651520 3651400 3649420 3649420 3649420 3649420 3649420 3649420 3649230 3648300 3648300 3652000 3647450 3647450 3646130 3646130 3646130 3646130 3646130 3646130 3648180 3648150 3648130 3645680 3649230 3649230 3653650 3653650 3653650 3652900 3652900 3652350 3643540 3643540 3643900 3643900 3643900 3643900 3644040 3652350 3651420 3651420 3651420

Peters mine Peters mine Peters mine Florida Rock Indus. quarry Battle mine Battle mine Battle mine Battle mine Battle mine Battle mine prospect pit prospect pit prospect pit Holmes mine Holmes mine Holmes mine Holmes mine Holmes mine Persons NE prospect Persons NE prospect Persons NE prospect Persons NE prospect Rev. Thadeus Persons mine Rev. Thadeus Persons mine Persons west prospect Persons west prospect J.T. Means mine J.T. Means mine Monroe Co. roadcut Monroe Co. roadcut Monroe Co. roadcut Homer Hardin mine Homer Hardin mine Homer Hardin mine Homer Hardin mine Holloway mine Holloway mine O.B. Clements property Brooks mine Brooks mine Brooks mine Brooks mine Brooks mine Brooks mine Brooks mine Fletcher mine Fletcher mine Fletcher mine Ruffin prospect Ruffin prospect Fletcher mine north Fletcher mine north

APPENDIX I. (cont.)
410-4 410-5 410-6 410-7 410-8 410-9 410-10 410-11 410-12 410-13 410-14 410-15 410-16 410-17 410-18 410-19 410-20 410-21 410-22 410-23 410-24 410-25 410-26 410-27 410-28 410-29 410-30 410-31 410-32 410-33 410-34 410-35 410-36 410-37 410-38 410-39 410-40 410-41 411-1 411-2 411-3 411-4 411-5 411-6 411-7 411-8 411-9 411-10 411-11 411-12 411-13 411-14

777300 777300 777300 770200 769140 769140 769140 769140 769140 769140 769220 769425 769425 772150 772150 772150 772150 772150 771620 771620 771620 771620 771520 771520 771420 771420 772900 772900 773220 771220 771220 778850 778850 778850 778850 780550 780550 771450 226120 226120 226120 226120 226120 226120 226120 219750 219750 219750 222650 222650 219760 219760

51

3651420 3651420 3651420 3647400 3641380 3641380 3641380 3641380 3641380 3641380 3641370 3641740 3641740 3642650 3642650 3642650 3642650 3642650 3646080 3646080 3646080 3646080 3646020 3646020 3646050 3646050 3651940 3651940 3654160 3652280 3652280 3643620 3643620 3643620 3643620 3643500 3643500 3646140 3654480 3654480 3654480 3654480 3654480 3654480 3654480 3651950 3651950 3651950 3647230 3647230 3652000 3652000

Monroe Co. roadcut Monroe Co. roadcut Monroe Co. roadcut Monroe Co. roadcut Talbot Co. roadcut Talbot Co. roadcut Upson Co. roadcut Upson Co. roadcut Talbot Co. roadcut Talbot Co. roadcut Talbot Co. roadcut Talbot Co. roadcut Talbot Co. roadcut Brown mine Brown mine Brown mine Brown mine Brown mine unnamed mine unnamed mine unnamed mine unnamed mine King-Thurston mine King-Thurston mine King-Thurston mine Mauldin mine Mauldin mine Mauldin mine Old Atwater mine Old Atwater mine Old Atwater mine Old Atwater mine Old Atwater mine Old Atwater mine Corley mine Corley mine Corley mine Corley mine Old Atwater mine Watson mine Watson mine Watson mine Atwater mine roadcut Atwater mine roadcut Atwater mine roadcut Dallas mine/prospect Dallas mine/prospect Grace prospect Grace prospect Grace prospect Gordon Scool roadcut Gordon Scool roadcut

APPENDIX I. (cont.)
411-15 411-16 411-17 411-18 437-1 437-2 438-1 438-2 438-3 438-4 438-5 438-6 438-7 439-1 439-2 439-3 439-4 439-5 439-6 439-7 439-8 439-9 439-10 439-11 439-12 439-13 439-14 439-15 439-16 439-17 439-18 439-19 439-20 439-21 439-22 439-23 439-24 439-25 439-26 439-27 439-28 439-29 439-30 439-31 439-32 439-33 439-34 439-35 439-36 439-37 439-38 439-39

223200 223200 223450 223450 728770 728770 744050 744050 741870 741630 740160 740160 740000 749750 749750 749750 749750 749750 750100 750100 750100 750100 750710 750710 750710 752380 752380 752380 754250 754250 754250 754250 754120 754250 756350 756350 756350 756350 754250 752330 752330 752330 754780 754780 754780 751660 751660 748000 748000 748000 746990 746990

52

3641680 3641680 3641800 3641800 3627330 3627330 3637860 3637820 3630380 3630400 3629610 3629610 3629090 3635300 3635300 3635300 3635300 3635300 3634630 3634630 3634630 3634630 3635350 3635350 3635350 3636600 3636600 3636600 3636520 3636520 3636520 3636520 3636460 3636520 3639730 3639730 3639730 3639730 3636520 3634990 3634990 3634990 3636720 3636720 3636720 3637975 3637975 3636510 3636510 3636510 3636350 3636350

Po Biddy Rd. roadcut Po Biddy Rd. roadcut Po Biddy Rd. roadcut Mauldin Rd. prospect Mauldin Rd. prospect Mauldin Rd. prospect Mauldin Rd. prospect Mauldin Rd. prospect Corley prospects Corley prospects Corley prospects Corley prospects Swift Creek mine Swift Creek mine Swift Creek mine Swift Creek mine Corley prospects Zorn prospect area Nottingham prospect area Nottingham prospect area Nottingham prospect area Upson Co. roadcut Upson Co. roadcut Upson Co. roadcut Upson Co. roadcut Cumbie prospect area Dallas prospects Dallas prospects Dallas prospects Dallas prospects Dallas prospects Mitchell Creek mine area Mitchell Creek mine area Mitchell Creek mine Mitchell Creek mine Mitchell Creek mine Bennie Baron mine Bennie Baron mine Bennie Baron mine Boyt mine Boyt mine Boytmine Boyt mine Boytmine prospect pit prospect pit Wheeles Mine Wheeles Mine Wheeles Mine Wheeles Mine Wheeles Mine Tomlin mine

APPENDIX I. (cont.)
439-40 439-41 439-42 439-43 439-44 439-45 439-46 439-47 439-48 439-49 439-50 439-51 439-52 439-53 439-54 439-55 439-56 439-57 439-58 439-59 439-60 439-61 439-62 439-63 439-64 439-65 439-66 439-67 439-68 439-69 439-70 440-1 440-2 440-3 440-4 440-5 440-6 440-7 440-8 440-9 440-10 440-11 440-12 440-13 440-14 440-15 440-16 440-17 440-18 440-19 440-20 440-21

749950 749950 749950 752250 752250 752250 752250 752250 756600 756600 756600 756600 757100 757100 757100 757100 756500 757180 755390 755440 755670 756480 756480 756480 756480 750500 751890 751890 751890 751890 751890 760200 760200 760280 760280 760280 758000 758000 758000 757620 757620 757620 757620 757620 761070 761070 761050 761050 761050 761050 761050 760920

53

3635450 3635450 3635450 3637110 3637110 3637110 3637110 3637110 3639550 3639550 3639550 3639550 3639600 3639600 3639600 3639600 3638700 3634480 3628200 3628250 3629170 3628550 3628550 3628550 3628550 3636450 3636800 3636800 3636800 3636800 3636800 3637270 3637270 3637450 3637450 3637450 3638120 3638120 3638120 3637350 3637350 3637350 3637350 3637350 3636430 3636430 3636720 3636720 3636720 3636720 3636720 3635650

Tomlin mine Tomlin mine Blount #1 mine Blount #1 mine Upson Co. roadcut Duke mine Duke mine Maze prospect Upson Co. roadcut Upson Co. roadcut Upson Co. roadcut Upson Co. roadcut Upson Co. roadcut Short Mitchell mine Short Mitchell mine Short Mitchell mine Upson Co. roadcut Upson Co. roadcut Upson Co. roadcut Upson Co. roadcut Triune Mills prospect Joe Persons mine Joe Persons mine Joe Persons mine Joe Persons mine Joe Persons mine Joe Persons mine Joe Persons mine Joe Persons mine Crawford Co. roadcut Crawford Co. roadcut Crawford Co. roadcut Crawford Co. roadcut Crawford Co. roadcut Crawford Co. roadcut Crawford Co. roadcut Crawford Co. roadcut Crawford Co. roadcut Crawford Co. roadcut Crawford Co. roadcut Crawford Co. roadcut Talbot Co. roadcut Talbot Co. roadcut Talbot Co. roadcut Talbot Co. roadcut Crawford Co. roadcut Crawford Co. roadcut

APPENDIX I. (cont.)
440-22 440-23 440-24 440-25 440-26 440-27 440-28 440-29 440-30 440-31 440-32 440-33 440-34 440-35 440-36 440-37 440-38 440-39 440-40 440-41 440-42 440-43 440-44 440-45 440-46 440-47 440-48 440-49 440-50 441-1 441-2 441-3 441-4 441-5 441-6 441-7 442-1 442-2 442-3 442-4 442-5 468-1 468-2 468-3 468-4 472-1 472-2

760920 760920 759750 759750 757850 759800 759800 758420 757800 757800 766900 766900 766900 765250 765250 765250 759650 759650 759650 759650 762100 760400 760400 760400 760400 760400 760400 760400 760400 773100 772950 769600 769600 769600 775500 773300 219880 219880 219950 226800 226800 729680 729680 729080 729080 770700 770700

3635650 3635650 3640600 3640600 3637520 3637075 3637075 3636870 3637520 3637520 3640750 3640750 3640750 3640120 3640120 3640120 3640660 3640660 3640660 3640660 3639100 3637700 3637700 3637700 3637700 3637700 3637700 3637700 3637700 3627200 3627250 3636050 3636050 3636050 3630550 3627220 3641060 3641000 3641210 3633430 3633430 3625150 3625150 3623470 3623470 3625480 3625480

54

APPENDIX I. (cont.)

~ines and prospects not sampled or located during this investigation. Locations are estimated from descriptions in earlier studies noted in text.

Old Martin prospect D.C. Ellerbee prospects T.J. Reeves prospect Old Bell mine Joe McKinley prospect L.M. Brooks prospect B.S. Gibson prospects F.E. Thomson prospect Emmit Trice prospects Bentley propsect Young mine J.M. Beven deposit S.P. Cronheim prospects outcrop J.W. Brown deposit outcrop Charlie Nims mine Cliff Middlebrooks deposit Colbert mine Pennyman mine Howard mine Williams and Holmes prospects Hellen McDonald prospect Carter mine Herron mine Taylor prospect Perdue prospect Haygood prospect Sugar Hill No. 2 prospect Sugar Hill No. 1 prospect Col. A. J. Thomas mine A.N. Moye property L.D. Owen prospect Goolsby prospect

735800 737500 744450 748210 753200 753750 753850 754100 754670 755800 757600 757680 758150 759240 759240 762550 762800 762850 763250 764000 765750 765850 767680 767900 767900 768180 768500 770550 770800 771200 771350 771600 780300 230200

3663550 3644250 3637950 3637050 3635200 3638075 3638500 3637450 3639700 3643650 3639500 3652900 3639520 3670250 3669940 3669900 3640720 3648150 3648300 3638800 3663150 3657550 3644470 3652960 3645300 3669880 3653650 3644500 3650720 3649250 3648500 3653900 3652400 3662200

Cities or towns

Barnesville City Yatesville City Thomaston City

765600 767200 750075

3660730 3645150 3641775

Sample numbers are keyed to the 7.5" quadrangle map numbers of the Georgia Geologic Survey.

Number

Quadrangle Name

348

Griffin South

349

Orchard Hill

351

Indian Springs

352

Berner

55

APPENDIX I. (cont.)

376

Concord

378

Barnesville

379

Johnstonville

380

Forsyth

381

East Juliette

408

Thomaston

409

Yatesville

410

Strouds

411

Smarr

437

Manchester

438

Roland

439

Lincoln Park

440

Logtown

441

Culloden

442

Moran

468

Talbotton

472

Roberta

56

APPENDIX II.

SAMPLE
348-1 349-1 349-3 349-5 349-6 349-8 349-11 349-13 349-17 349-19 349-21 351-1 351-5 351-7 351-8 351-14 351-27 351-30 352-16 352-29 352-33 376-1 376-3 376-7 376-12 378-01 378-2 378-6 379-03 379-3 379-04 379-05 379-06 379-08 379-8 379-10 379-12 379-17 379-19 379-21 379-24 379-27 379-29 380-1 380-7 380-8 380-10

MUSCOVITE GEOCHEMISTRY

K20 Rb. .s.r Li E

]k ILl H..aLRh. ..Ga

9.57 590 21

8.22 195 11

9.3 681

5

9.72 712 6

9.32 609 10

7.66 228 11

8.15 932 7

8.79 685 5

8.28 476 6

9.54 539 5

11.9 476 7

9.78 434 6

7.96 598 11

8.94 409 9

8.6 412 8

8.91 476 11

7.27 263 12

8.23 332 8

9.66 442 10

9.84 544 13

8.7 417 14

8.64 271 27

7.95 537 3

9.3 609 2

9.04 415 3

9.3 230 45

9.18 544 14

9.55 424 25

10 710 5

5 26

9.4 610 5

10.3 560 10

9.6 460 15

10.4 630 20

10 41

7.8 365 15

8.76 504 17

8.17 321 10

8.81 562 6

8.69 362 14

9.6 362 10

9.49 536 5

8.89 602 5

8.59 309 13

9 415

7

9.64 540 9

8.65 263 23

84 973 5.6 119 0.20 73

32 520 16.9 106 0.54 20

78 1017 8.4 172 0.25 46

129 881 6.8 89 0.13 58

43 1429 6.9 492 0.81 44

35 420 6.1 696 3.05 38

51 981 9.2 137 0.15 56

59 1201 9.6 58 0.08 48

94 1548 7.7 135 0.28 43

40 996 5.3 195 0.36 45

36 1151 11.9 308 0.65 33

67 2010 2.9 769 1.77 102

49 1121 10.3 135 0.23 82

23 1021 10.6 367 0.90 68

19 663 5.5 114 0.28 41

55 1314 6.9 259 0.54 67

22 670 5.3 499 1.90 46

19 652 6.7 156 0.47 79

10 184 2.3 367 0.83 85

37 573 7.1 253 0.47 71

30 608 5.4 235 0.56 58

17 667 4.2 1516 5.59 30

29 1274 5

89 0.17 60

71 1215 15.3 14 0.02 66

43 646 6.1 101 0.24 53

85 1000 10 500 2.17 32

74 1225 3.4 388 0.71 84

79 2822 7.0 918 2.17 55

35 2000 10 200 0.28 60

18.6 88

50

30 1900 10 150 0.25 48

40 2300 10 390 0.70 50

40 2200 10 100 0.22 50

50 2400 10 400 0.63 44

25.9 643

57

40 2000 10 440 1.21 46

37 2869 7.3 480 0.95 79

63 426 24.3 747 2.33 44

35 3236 13.6 341 0.61 82

28 894 11 921 2.54 52

23 1392 2.6 727 2.01 63

47 1615 7.7 345 0.64 57

43 1991 12.6 210 0.35 41

19 941 5.9 653 2.11 62

34 1053 6.8 542 1.31 46

59 2188 12.3 192 0.36 63

15 581 4.2 666 2.53 29

57

SAMPLE
380-11 381-1 381-5 381-7 381-12 408-1 408-4 408-6 409-1 409-7 409-9 409-12 409-14 409-19 409-22 409-25 409-28 409-30 409-32 409-33 409-37 410-1 410-13 410-16 410-17 410-22 410-26 410-30 410-32 410-33 410-35 410-39 410-41 411-2 411-8 411-12 411-13 411-15 411-17 437-1 438-1 438-3 438-7 439-1 439-7 439-10 439-13 439-16 439-20 439-23

Kill Rh. .sr

9.78 315 14

8.21 1162 12

8.45 362 49

8.85 331 23

7.72 319 4

9.25 1152 6

8.6 1274 6

8.78 1476 4

8.65 749 <1

8.71 760 <1

5.9 IS

16

8.34 279 17

8.88 341 22

8.74 871 3

8.67 317 14

7.94 475 1

6.4 347 9

9.5 463 13

8.66 500 5

8.15 1234 <1

8

42

8.9 750 <1

9.38 545 1

7.8 277 11

9.33 649 <1

9.15 533 5

9.02 388 6

8.57 512 8

8.03 381 15

9.2 607 5

9.34 625 3

9.89 256 10

8.6 513 10

8.99 71

4

9.09 412 9

9.62 395 4

9.95 523 <1

9.92 746 3

9.89 363 5

8.7 589 3

7.76 384 7

10.36 261 27

9.97 261 10

8.78 458 7

9.31 371 10

9.54 595 <1

8.47 352 12

9.33 412 18

9.53 562 3

8.72 360 10

APPENDIX II. (cont.)

Li E

1le. 1!A lWllil ...Ga

20 1364 3.7 495 1.57 58

17 585 5.8 134 0.12 89

18 345 3.2 1056 2.92 33

18 264 2.9 563 1.70 14

18 244 1.1 676 2.12 47

56 3828 5.1 77 0.07 86

87 4505 6.8 45 0.04 109

61 3509 10.1 48 0.03 96

113 4098 12.5 124 0.17 119

58 2672 8.7 212 0.28 100

53 IS

8.4 200

58

22 1223 6.9 690 2.47 65

19 1039 5.9 1212 3.55 57

100 4079 17.7 58 0.07 89

18 826 5 673 2.12 53

22 1606 6.4 107 0.23 77

27 1375 2.1 278 0.80 56

24 3088 4.9 761 1.64 66

50 1385 4.4 150 0.30 87

330 7076 22.1 103 0.08 115

IS 16 131

75

38 1353 11.9 103 0.14 96

32 1839 11.7 274 0.50 66

16 643 1.9 612 2.21 58

35 2472 15 167 0.26 69

22 1258 10 111 0.21 69

16 808 3.9 331 0.85 70

13 522 24.6 329 0.64 50

22 1643 19 875 2.30 42

26 1970 19 202 0.33 104

72 2960 10.2 46 0.07 69

26 651 6.5 892 3.48 43

17 1210 9.1 537 1.05 34

19 927 11.1 292 0.79 58

25 1201 4.7 718 1.74 78

32 1015 16.9 149 0.38 45

45 1560 12.1 223 0.43 41

31 675 8.5 55 0.07 70

32 1340 10.6 208 0.57 51

43 1086 10.5 106 0.18 71

34 820 9.2 510 1.33 60

15 1110 9.7 1215 4.66 39

9 765 7.7 734 2.81 33

53 1349 5.2 364 0.79 82

17 624 4.8 533 1.44 66

25 911 18.3 150 0.25 73

38 755 5.2 518 1.47 68

34 948 3 410 1.00 75

24 1458 5.7 154 0.27 83

25 1169 7 482 1.34 48

58

APPENDIX II. (cont.)

SAMPLE
439-27 439-34 439-35 439-38 439-45 439-48 439-52 439-57 439-65 439-66 440-1 440-5 440-6 440-9 440-19 440-22 440-25 440-28 440-29 440-30 440-32 440-35 440-42 440-43 440-48 441-3

Kill ill2. Sr

9.46 353 5

9.15 427 4

9.53 413 5

9.03 370 6

9.44 399 7

10.1 586 10

9.9 842 5

9.8 392 <1

8.75 464 <1

8.95 390 <1

10.3 306 11

9.58 292 12

9.01 324 17

9.73 370 11

9.84 446 16

9.05 346 10

7.3 503 7

9 317 12

9.16 379 11

8.4 369 7

8.62 448 4

8.88 308 8

9.3 300 <1

9.05 611 <1

9.1 415 22

8.35 IS

15

1.i E

]k

~

1!.aL.Rb. _GA

19 785 7 165 0.47 54

17 1790 12.7 104 0.24 54

33 789 3 398 0.96 72

17 711 7.3 710 1.92 56

22 804 2.1 654 1.64 66

33 1828 8.5 156 0.27 85

25 840 14.4 58 0.07 77

29 910 3.3 244 0.62 36

14 736 14.7 203 0.44 37

20 855 7 283 0.73 33

19 628 1.7 924 3.02 47

17 590 2.5 1456 4.99 56

24 1207 4.6 581 1.79 56

21 891 2.2 416 1.12 72

26 779 4.5 410 0.92 87

9 1121 21.2 568 1.64 35

42 1422 10.7 156 0.31 69

23 671 3.2 778 2.45 63

18 514 3.1 710 1.87 59

15 617 10.2 199 0.54 59

27 864 6.5 206 0.46 73

30 647 4.8 462 1.50 54

21 812 4.6 1024 3.41 33

11 1131 22.7 42 0.07 24

18 528 266.5 113 0.27 30

21 752 7.9 446

51

59

SAMPLE
348-1 349-1 349-3 349-5 349-6 349-8 349-11 349-13 349-17 349-19 349-21 351-1 351-5 351-7 351-8 351-14 351-27 351-30 352-16 352-29 352-33 376-1 376-3 376-7 376-12 378-01 378-2 378-6 379-03 379-3 379-04 379-05 379-06 379-08 379-8 379-10 379-12 379-17 379-19 379-21 379-24 379-27 379-29 380-1 380-7 380-8 380-10 380-11 381-1 381-5

Sn ~

36

57 15

23 <5

37 <5

34

9

<20 14

42 10

53

37

28

46

<20 65

32 23

<20 29

<20 30

<20

<20

<20

<20 <5

<20 109

<20 74

10

32

78

113

1

<20 19

<20 39

1

<20 81

1

1

1

1

<20 87

1

<20 91

<20 70

<20 73

<20 132

<20 42

<20 8

<20 16

<20 57

<20 14

<20 11

<20 39

10

<20 60

<20 183

APPENDIX II. (cont.)

Ta NQ Taffa+Nb Rb/K20Rb/Sr KlR12.

251

22 0.92

51

29 0.64

<1

36 0,01

<1

46 0.01

<1

41 0.01

<1

30 0.02

14

74 0.16

201

32 0.86

161

22 0.88

91

21 0.81

131

13 0.91

<1

95 0.01

55

54 0.50

20

49 0.29

<1

42 0,01

2.5 38 0.06

23

30 0.43

2.5 68 0.04

<1

29 0.02

14

117 0.11

49

77 0.39

120

2.5 0.98

169 65 0.72

125

70 0.64

114 53 0.68

10

1

59

82 0.42

2.5 77 0.03

10

1

<1

73 0.01

10

1

10

1

10

1

10

1

<1

51 0.01

10

1

16

109 0.13

121

74 0.62

<1

112 0.00

<1

45 0.01

<1

31 0.02

<1

30 0.02

<1

20 0.02

11

52 0.17

<1

19 0.03

<1

22 0.02

2.5 36 0.06

138

9 0.94

62

334 0.16

6

44 0.12

61.65 23.72 73.23 73.25 65.34 29.77 114.36 77.93 57.49 56.50 40.00 44.38 75.13 45.75 47.91 53.42 36.18 40.34 45.76 55.28 47.93 31.37 67.55 65.48 45.91 24.73 59.26 44.40 71.00

28.10 17.73 136.20 118.67 60.90 20.73 133.14 137.00 79.33 107.80 68.00 72.33 54.36 45.44 51.50 43.27 21.92 41.50 44.20 41.85 29.79 10.04 179.00 304.50 138.33 5.11 38.86 16.96 142.00

134.61 349.82 113.33 113.29 127.00 278.81 72.57 106.49 144.36 146.88 207.47 187.01 110.47 181.40 173.23 155.34 229.40 205.72 181.37 150.11 173.14 264.58 122.86 126.73 180.77 335.56 140.04 186.92 116.88

64.89 54.37 47.92 60.58

122.00 56.00 30.67 31.50

127.88 152.64 173.19 137.00

46.79 57.53 39.29 63.79 41.66 37.71 56.48 67.72 35.97 46.11 56.02 30.40 32.21 141.53 42.84

24.33 29.65 32.10 93.67 25.86 36.20 107.20 120.40 23.77 59.29 60 11.43 22.50 96.83 7.39

177.34 144.24 211.22 130.09 199.22 220.08 146.93 122.55 230.70 179.97 148.15 272.94 257.66 58.63 193.71

60

SAMPLE
381-7 381-12 408-1 408-4 408-6 409-1 409-7 409-9 409-12 409-14 409-19 409-22 409-25 409-28 409-30 409-32 409-33 409-37 410-1 410-13 410-16 410-17 410-22 410-26 410-30 410-32 410-33 410-35 410-39 410-41 411-2 411-8 411-12 411-13 411-15 411-17 437-1 438-1 438-3 438-7 439-1 439-7 439-10 439-13 439-16 439-20 439-23 439-27 439-34 439-35

Sn ~

<20 22

<20 44

206 19

253 12

265 12

<20 62

<20 72

<20 138

<20 126

<20 48

30 34

<20 126

<20 68

<20 100

<20 118

57 23

34 74

<20 87

<20 71

<20 67

56

9

<20 79

<20 71

<20 65

<20 33

<20 43

<20 37

<20 <5

<20 26

46 <5

<20 66

<20 62

<20 <5

<20 44

28

10

66 13

<20 18

10

10

<20 59

<20 76

<20 67

<20 74

<20 120

<20 54

<20 44

<20 5

<20 8

<20 19

APPENDIX II. (cont.)

Ll NQ Ta/TaNb Rb/K20Rb/Sr KLRh.

2.5 22 0.10

30

37 0.06

<1

27 0.02

1

26 0.04

<1

133 0.00

76

139 0.35

25

129 0.16

<1

76 0.01

<1

49 O.Q1

138

61 0.69

189 102 0.65

<1

43 0.01

136 150 0.48

<1

46 0.01

<1

55 0.01

48

55 0.47

<1

144 0.00

12

81 0.13

114 105 0.52

<1

73 O.Q1

<1

38 O.Ql

<1

97 O.Dl

<1

52 O.Ql

27

52 0.34

32

56 0.36

<1

30 0.02

53

238 0.18

<1

73 0.01

20

29 0.41

<1

31 0.02

11

57 0.16

<1

47 0.01

<1

38 0.01

2.5 37 0.06

139 123 0.53

140

39 0.78

18

58 0.24

<1

21 0.02

110

16 0.87

139

10 0.93

36

61 0.37

<1

53 O.Dl

11

79 0.12

22

58 0.28

<1

51 O.Ql

<1

174 0.00

8

69 0.10

<1

39 O.Ql

<1

69 0.01

<1

42 0.01

37.40 41.32 124.54 148.14 168.11 86.59 87.26

14.39 79.75 192 212.33 369 1498 1520

221.89 200.84 66.63 56.02 49.37 95.84 95.11

33.45 38.40 99.66 36.56 59.82 54.22 48.74 57.74 151.41

16.41 15.50 290.33 22.64 475 38.56 35.62 100 2468

248.07 216.11 83.27 226.97 138.72 153.06 170.28 143.73 54.81

84.27 58.10 35.51 69.56 58.25 43.02 59.74 47.45 65.98 66.92 25.88 59.65 41.27 45.32 41.06 52.56 75.20 36.70 67.70 49.48 25.19 26.18 52.16 39.85 62.37 41.56 44.16 58.97 41.28 37.32 46.67 43.34

1500 545 25.18 1298 106.6 64.67 64 25.4 121.4 208.33 25.6 51.3 92.75 45.78 98.75 1046 248.67 72.60 196.33 54.86
9.67 26.10 65.43 37.10 1190 29.33 22.89 187.33 36 70.60 106.75 82.60

98.48 142.83 233.68 119.30 142.46 192.92 138.91 174.91 125.78 124.02 320.60 139.12 201.09 183.10 202.11 157.88 110.35 226.10 122.58 167.70 329.41 317.01 159.09 208.25 133.06 199.69 187.93 140.72 201.01 222.40 177.83 191.49

61

SAMPLE
439-38 43945 43948 439-52 439-57 439-65 439-66 440-1 440-5 440-6 440-9 440-19 440-22 440-25 440-28 440-29 440-30 440-32 440-35 44042 44043 44048 441-3

APPENDIX II. (cont.)

m .s.n Ce. Ll

Ta}TaNb Rb/K20Rb/Sr KLilll

<20 <5 <20 16 <20 55 <20 78 <20 35 24 28 <20 28 <20 <5 <20 53 <20 66 <20 44 <20 59 <20 60 <20 33 <20 23 <20 37 <20 57 <20 25 <20 17 <20 47 49 38 <20 24 <20 56

28

30 0.48

10

42 0.19

25

70 0.26

15 132 0.10

31

38 0.06

96

65 0.04

30

38 0.06

8

38 0.17

54

64 0.46

66

46 0.59

37

48 0.44

<1

63 0.01

11

38 0.22

43

64 0.40

<1

52 0.01

<1

46 0.01

54

61 0.47

105 88 0.54

34

50 0.40

15

35 0.07

26

89 0.03

2.5 51 0.26

44

51 0.46

40.97 42.27 58.02 85.05 40.00 53.03 43.58 29.71 30.48 35.96 38.03 45.33 38.23 68.90 35.22 41.38 43.93 51.97 34.68 32.26 67.51 45.60

61.67 202.53 57 196.34 58.60 143.03 168.40 97.57 784.00 207.47 928.00 156.50 780.00 190.45 27.82 279.34 24.33 272.27 19.06 230.78 33.64 218.23 27.88 183.09 34.60 217.06 71.86 120.44 26.42 235.61 34.45 200.57 52.71 188.91 112 159.68 38.50 239.26 600 257.26 1222 122.92 18.86 181.97

62

SAMPLE
348-11 349-1 349-3 349-5 349-6 349-8 349-11 349-13 349-17 349-19 349-21 351-1 351-5 351-7 351-8 351-14 351-27 351-30 352-16 352-29 352-33 376-1 376-3 376-7 376-12 378-01 378-2 378-6 379-03 379-3 379-04 379-05 379-06 379-08 379-8 379-10 379-12 379-17 379-19 379-21 379-24 379-27 379-29 380-1 380-7 380-8 380-10 380-11 381-1

APPENDIX II. (cont.)

Cl! r.b.
6 50 23 20 10 22 37 16 15 22 145 56 15 11 4 1 9 1 2 1 5 1 <1 8 7 14 6 24 11 9 15 14 14 10 9 13 10 18 19 2 25 4 5 1 11 1 <1 1 11 1
13 5 7 2
16 34
12 35
19 12 <1 21 <1 16 16 19 24 19 6 19 6 20 <1 10 11 21 8 18 6 1 2 1 <1 10

Zn M.u Ni

41 65 23

48 12 11

42 3 6

74 5 10

48 1 8

52 14 10

54 7 15

26 8 5

41 3 17

14 <1 3

23 1 6

53 <1 <1

86 <1 9

84 2 8

54 6 10

50 18 16

69 1 13

58

4

11

54 3 13

49 4 8

54 2 11

4 <1 5

15 <1 4

32 <1 2

4 <1 2

10

38 7 8

72

2

6

25

122 4 4

45

25

35

25

74 3 8

20

85 8 6

48 <1 <1

105 <1 <1

57 5 6

57 3 6

57 <1 5

101 2 5

52 <1 <1

56

3

11

63 7 5

32 <1 5

17 <1 5

77 <1 <1

CQ .cr As.

2.3 39 227

6 104 30

3 23 45

3 59

8

8

35

11

24 112 2.5

2 61

2.5

1 50 46

1 42 15

1 21

7

1 52

7

<1 19

2.5

9 52

2.5

4

98

2.5

7 69 45

3 42 17

2 113 38

3 87 14

4 46 19

<1 20

11

6 50

2.5

1

39

11

1 83

2.5

1 20

2.5

1 56 19

3 80 37 <1 30 30

<1 3

53

4 14 17

6 60

2.5

3 37

2.5

6 37 12

3 40 14

3 113 19

5 47

2.5

4 27

2.5

6 78

7

4

72

2.5

3 19

2.5

2 57 57

1 36

2.5

3 26

2.5

63

SAMPLE
381-5 381-7 381-12 408-1 408-4 408-6 409-1 409-7 409-9 409-12 409-14 409-19 409-22 409-25 409-28 409-30 409-32 409-33 409-37 410-1 410-13 410-16 410-17 410-22 410-26 410-30 410-32 410-39 410-41 411-2 411-8 411-12 411-13 411-15 411-17 437-1 438-1 438-3 438-7 439-1 439-7 439-10 439-13 439-16 439-20 439-23 439-27 439-34 439-35 439-38

Cll fll

18 3

<1 1

11 1

7 27

8 23

6 23

<1 10

<1 12

41 27

19 27

<1 23

6 12

15 15

9 11

19 22

16 28

8 28

<1 3

19 23

<1 10

<1 8

5 2

<1 19

13 30

<1 15

7 20

8 27

20 20

8 22

7 16

<1 11

13 15

<1 1

5 1

3 1

12 2

8 9

4

1

<1 1

<1 10

<1 1

<1 1

<1 1

12 25

<1 11

2 13

21 20

11 25

10 7

11 1

APPENDIX II. (cont.)

Zn Mo Ni CQ Cr A

62 5 6

29 <1 1

29 <1 2

169 3 4

178 3 10

155 2 3

79 <1 <1

54 <1 <1

112 42 27

69 6 12

55 <1 <1

179 <1 6

36 5 10

43 <1 <1

46 11 14

61

4 13

48 6 7

226 <1 <1

70 26 18

66 <1 <1

72 <1 <1

33 <1 6

149 <1 <1

90 <1 5

46 <1 <1

154 1 7

59 3 8

78 1 8

46 1 5

56 <1 18

40 <1 <1

68 <1 4

47 <1 <1

9 <1 5

33 <1 6

67 4 5

42 2 10

17 <1 4

20 <1 2

55 <1 <1

33 <1 <1

85 <1 <1

44 <1 <1

51 <1 8

30 <1 <1

49 <1 <1

188 <1 12

39 <1 3

37 3 2

33 4 4

6 44 10

5 25 25

5 90 90

1

13

2.5

<1 26

2.5

<1 18

2.5

1

22

2.5

1

19

6

5 823 26

5

56

2.5

<1 52

2.5

6 115 <1

4 56 21

<1 86

2.5

4 175

2.5

8 65

2.5

6 145 <1

3 37

2.5

4 481

8

4

44

16

3 28

2.5

5 132 <1

5 35

2.5

1

7

2

2

21

2.5

3

16

2.5

12 62

2.5

2 75 12

<1 37

2.5

52 48

2.5

3 60

2.5

4

57

2.5

3

14

14

1 106

7

1

23

2.5

<1 65 37

1

84

2.5

1 36 23

1 24

2.5

1 50

2.5

2 29

2.5

2

12

2.5

3 86

2.5

5

16

29

<1 1

2.5

<1 73

2.5

6 65

2.5

<1 43 15

<1 23

2.5

<1 67

2.5

64

SAMPLE
439-45 439-48 439-52 439-57 439-65 439-66 440-1 440-5 440-6 440-9 440-19 440-22 440-25 440-28 440-29 440-30 440-32 440-35 440-42 440-43 440-48 441-3

Q! rQ
10 1 22 1 19 20 <1 1 <1 1 <1 1 3 10 <1 4 3 8 <1 1 <1 8 <1 17 5 13 5 10 6 13 6 22 14 7 13 3 <1 1 <1 1 24 20 13 32

APPENDIX II. (cont.)

Zn Mo Ni Q2 .cr ~

47 2 2 92 <1 6 56 <1 2 66 <1 <1 59 <1 <1 36 <1 <1 36 4 4 34 <1 <1 60 <1 <1 33 <1 <1 23 <1 <1 53 <1 <1 165 3 3 50 4 6 40 4 5 63 3 7 62 2 6 58 3 10 46 <1 <1 158 <1 <1 102 17 18 69 12 12

<1 28

2.5

4 38 15

<1

22

13

<1 52 52

<1 52 52

<1 18 18

5 38 <1

2 61

2.5

4 85

2.5

<1

6

17

<1 17

2.5

3

31

15

2

131

2.5

4 54

2.5

5 34

2.5

3 106 2.5

3 51 43

6 40

2.5

<1 51

51

<1 40 40

6 40 40

9 376 2.5

65

SAMPLE
348-1 349-1 349-3 349-5 349-6 349-8 349-11 349-13 349-17 349-19 349-21 351-1 351-5 351-7 351-8 351-14 351-27 351-30 352-16 352-29 352-33 376-1 376-3 376-7 376-12 378-01 378-2 378-6 379-03 379-3 379-04 379-05 379-06 379-08 379-8 379-10 379-12 379-17 379-19 379-21 379-24 379-27 379-29 380-1 380-7 380-8 380-10 380-11 381-1 381-5

y La

20 37

22 12

16 2

8 3

21 3

174 1

17 5

4

2.5

43 2.5

6 2.5

14 2.5

24 <1

21 2

60 <1

57 4

52 11

112 7

39 8

33 2

86 <1

55 1

114 2.5

41 2.5

22 2.5

40 2.5

89 <1 148 2.5

4 <1

APPENDIX II. (cont.)

Zr X .s..c. ~ Bi

2.5 2.3 2.5

20 8 <1

4

6 22

6

4 <1

8 <1 <1

25 6 44

13 4 2

2.5

2.5

2.5

2.5

60 <1 36

26 7 <1

17 4 <1

6

8

2.5 2.5

13 2.5

34 2.5

<1 7 <1

29 7 57

17 3 70

2.5

2.5

2.5

2.5

<1 2.5 <1 2.5 <1 2.5 <1 2.5 <1 2.5 2 6 1 2.5 1 2.5 1 2.5 1 2.5 <1 2.5 <1 2.5 <1 2.5 <1 2.5 2.5 7 0.25 5 0.25 2.5 <1 2.5 <1 2.5 <1 2.5 1 2.5 1 2.5 1 2.5 1 2.5

5 <1 17 2.5 2.5 50

<1 2.5 0.25 2.5

28 2 <1 <1 2.5

79 3
46 7 11 <1 8 <1 23 4 146 10 58 <1 17 2 22 <1 178 3 39 4 79 2.5 52 2.5 49 <1 47 2

130 5 43

57 4 <1

64 <1 <1

69 1 <1

17

6

<1

<1 5 22

<1 9

1 2

61 2 35

4

5

<1 5

23 2.5 24

2.5

55 2 92

19 8 32

<1 2.5
<1 2.5 <1 14 <1 9 <1 2.5 <1 2.5 <1 2.5 <1 2.5 <1 2.5 <1 2.5 <1 2.5 0.25 2.5 1 2.5 <1 14 <1 6

66

SAMPLE
381-7 381-12 408-1 408-4 408-6 409-1 409-7 409-9 409-12 409-14 409-19 409-22 409-25 409-28 409-30 409-32 409-33 409-37 410-1 410-13 410-16 410-17 410-22 410-26 410-30 410-32 410-33 410-35 410-39 410-41 411-2 411-8 411-12 411-13 411-15 411-17 437-1 438-1 438-3 438-7 439-1 439-7 439-10 439-13 439-16 439-20 439-23 439-27 439-34 439-35

v 1.a

63 2.5

186 2.5

17 5

17 4

17 <1

<1 <1

13 <1

48 36

33 2

14 <1

26 2

113 3

22 <1

135 13

108 <1

38 1

<1 <1

22 5

9 <1

6 <1

102 2

<1 <1

4 <1

<1 <1

22 <1

57 6

28 <1

6 1

65 1

17 2

<1 <1

69 <1

14 <1

21 2.5

17 2.5

29 2.5

12 <1

80 6

79 2.5

7 2.5

11 <1

34 <1

<1 <1

22 <1

8

<1

7 <1

14 <1

13 1

20 4

58 <1

APPENDIX II. (cont.)

Z!: X ~ .cd Bi

6

2.5 25

23 2.5 68

6

9

<1 6

<1 2

55 1 21

55 1 9

58 15 7

29 3 16

55 <1 <1

30 1 <1

25 2 32

58 <1 <1

35 9 65

13 3 55

31 <1 <1

68 3 <1

40 5 1

64 <1 <1

64 6 <1

12 <1 <1

65 2 <1

34 <1 <1

66 <1 <1

22 4 <1

29 5 <1

62 7 <1

7

3

9

2

1 16

2

3

65 1 <1

51 <1 3

11 <1 21

11

2.5 23

2.5

2.5

16 <1 <1

8

7

2.5

2.5

57 2 <1

58 <1 17

65 <1 <1

73 6 6

36 <1 27

202 <1 <1

88 4 <1

5 <1 28

14 3 16

<1 5 <1

0.25 2.5 0.25 2.5 <1 2.5 <1 10 <1 2.5 <1 2.5 <1 14 <1 2.5 <1 2.5 <1 23 <1 24 <1 2.5 <1 2.5 <1 2.5 1 2.5 <1 8 <1 13 <1 2.5 <1 13 <1 2.5 5 2.5 <1 9 <1 2.5 <1 2.5 <1 2.5 <1 2.5 <1 2.5 <1 2.5 <1 2.5 <1 6 <1 10 <1 7 <1 2.5 0.25 2.5 1 2.5
2.5 <1 2.5 <1 2.5 1 2.5 1 2.5 <1 6 <1 13 <1 2.5 <1 9 <1 2.5 <1 8 <1 18 <1 2.5 <1 2.5 <1 2.5

67

SAMPLE
439-38 439-45 439-48 439-52 439-57 439-65 439-66 440-1 440-5 440-6 440-9 440-19 440-22 440-25 440-28 440-29 440-30 440-32 440-35 440-42 440-43 440-48 441-3

v I&
61 <1 68 <1 12 2 14 2 1 2.5 10 2.5 1 2.5 26 <1 126 <1 35 <1 20 <1 21 <1 <1 <1 35 2 79 <1 101 <1 30 5 53 <1 110 <1 79 2.5 1 2.5 20 18 48 5

APPENDIX II. (cont.)

Zr

y

~

Cd Bi

4

3 <1

<1 2 6

5

2 45

26 9 46

2.5 2.5 25

16 2.5 22

2.5 2.5 20

22 <1 <1

59 <1 <1

66 1 29

25 <1 28

107 2 13

64 <1 <1

23 3 <1

14 2 5

12 3 <1

32 6 <1

6

<1 <1

<1 <1 8

2.5 2.5 37

2.5 2.5 23

23 2.5 5

27 10 <1

<1 2.5 1 2.5 <1 6 <1 10 0.25 2.5 0.25 2.5 0.25 2.5 <1 14 <1 16 <1 7 <1 8 <1 20 <1 2.5 <1 2.5 <1 8 <1 2.5 <1 2.5 2 2.5 2 2.5 0.25 2.5 0.25 2.5 4.2 2.5 <1 2.5

68

APPENDIX III.

FELDSPAR GEOCHEMISTRY

SAMPLE K20 Sl.Ql !:ill N.aill Al2..Qa Fe203 1QI MgQ MnO UQ5 I.im

351-10 351-12 351-16 351-19 352-31 379-01 379-02 379-09 379-11 379-14 379-30 380-6 381-2 408-5 408-8 409-6 409-17 409-34 410-5 410-10 410-20 410-25 410-34 410-36 411-1 439-4 439-24 439-44 439-54 439-58 439-60 439-61 439-68 440-3 440-18 440-39 440-47 414-1 441-1 441-2 441-4 468-1 472-1

12.3 66.2 0.07 1.25 16.9 0.36 0.82 0.06 0.005 1.25 0.03

9.54 69.6 0.01 0.32 15.8 0.98 2.68 0.06 0.005 0.03 0.12

13.6 63.2 0.09 1.14 17.7 0.3

1.47 0.02 0.005 0.76 0.03

14.2 64.4 0.06 0.57 16.7 0.44 1.06 0.01 0.005 0.71 0.04

13

65.2 0.03 0.63 17.5 0.33 1.48 0.03 0.005 0.18 0.04

11.1 68.2 0.029 0.66

11.3 69

0.028 0.75

6.9 48.2 0.53 2.7

0.8 64.8 4.3

8

15

63.9 0.04 0.89 17.4 0.33 0.6 0.01 0.005 0.24 0.04

5.33 70.6 0.97 2.79 14.4 1.83 1.73 0.49 0.02 0.18 0.37

8.99 58.1 0.05 0.56 25.1 0.14 6.67 O.ol 0.005 0.16 O.ol

11.6 66

0.24 2.34 18

0.2

0.69 0.01 0.005 0.1

0.01

1.33 47.2 0.07 0.06 34.6 2.92 13.12 0.16 0.02 0.18 0.4

0.68 47.1 0.09 0.07 35.3 0.75 13.81 0.08 0.03 0.15 0.11

5.02 66.5 1.1

6.68 19.1 0.19 0.39 0.01 0.005 0.13 0.01

7.03

0.51 5.84

10.3 66.1 0.45 3.02 18.5 0.37 0.43 0.05 0.04 0.15 0.04

12.6 63.8 0.03 2.06 19.2 0.26 0.85 0.02 0.005 0.13 0.03

11

65.7 0.22 3.25 18.1 0.24 0.2 0.02 0.005 0.14 0.03

11.3 65.3 0.08 1.28 18

0.27 1.57 0.05 0.02 0.18 0.02

0.59 65

1.49 7.27 21.1 0.23 3.01 0.02 0.005 0.48 0.005

12.5 65.5 0.04 1.52 17.7 0.23 0.99 0.02 0.005 0.23 0.02

9.37

0.005 0.36 22.1 0.3

5.63 0.03 0.02 0.15 0.03

12

63.7 0.01 0.69 19.4 0.16 2.05 0.005 0.005 0.23 0.02

9.52 72.9 0.01 0.54 13.2 0.55 1.05 0.005 0.005 0.24 0.01

13

64

0.04 1.04 19

0.44 1.41 0.03 0.005 0.11 0.04

5.09 70.9 0.09 0.36 16.3 0.43 4.8 0.07 0.02 0.22 0.05

10.2 67.2 0.26 3.06 17.2 0.2

0.3 0.02 0.005 0.14 O.Dl

9.4 66

0.3

2.05 15.6 6

0.53 0.03 0.005 0.24 0.02

11.7 64

0.04 0.99 15.3 6.53 0.73 0.02 0.005 0.32 0.03

11.4 65

0.06 1.51 15

6

0.62 0.02 0.005 0.33 0.01

0.88 57.2 0.06 0.15 18.3 6.34 13.88 0.05 0.04 0.24 0.02

11.4 66.5 0.18 2

17.4 0.23 0.45 0.04 0.005 0.26 0.04

13.5 62.9 0.04 0.81 19

0.35 1.24 0.05 0.005 0.05 0.06

12.4 65.7 0.07 0.71 17.7 0.49 1.36 0.04 0.005 0.18 0.02

8

65.4 0.58 4.7

14.4 6.34 0.78 0.01 0.005 0.16 0.005

13.6

0.11 1.59

10.7

0.19 2.35

5.17

1

5.31

3.25 72.2 0.74 5.81 15.1 0.54 0.59 0.05 0.03 0.2

0.03

5.24 71.7 0.07 0.35 16.6 0.48 4.69 0.03 O.Dl 0.11 0.05

5.54 60.7 0.92 4.79 15.2 0.29 0.29 0.04 0.005 0.03 O.Dl

69

SAMPLE Rb. fu:

Li

351-10 351-12 351-16 351-19 352-31 379-01 379-02 379-09 379-11 379-14 379-30 380-6 381-2 408-5
408~8
409~
409-17 409-34
410~5
410-10 410-20 410-25 410-34 410-36 411-1 439-4 439-11 439-24 439-44 439-54 439-58 439-60 439-61 439-68 440-3 440-18 440-39 440-47 414-1
441-1
441-2 441-4 468-1 472-1

413 46 5

192 343 4

391 78 5

349 53 3

150 173 2

360 135 5

355 165 5

410 65 30

20 130 5

499 191 3

380 79 18

181 179 5

682 191 <1

156 15 15

66

15 24

47.8 33 <1

395 40 s

890 39 2

767 56 4

550 53 2

529 56 2

13 66 15

455 110 2

745

8

4

322 138 <1

312 131 5

536 69 <1

34.3 232 1

173 21

7

386 49 4

217 346 1

279 443 1

346 125 1

35

7

,8

218 256 <1

296 360 2

447 98 1

366 45 5

199 448 2

277 363 <1

122 419 <1

128 186 1

176 13 6

112 337 3

APPENDIX III. (cont.)

E

lk 1l.a Ga Sn ~ :ra

43 2.4 345 1 <20 <5 <1

48

1

2500 12 <20 417 <1

80 1.9 1446 16 <20

5

33 1.7 1055 20 <20

5

27 2.7 984 14 <20 124 16

63 1.5 1725 4 <20 116 23

652 2.4 617 22 <20 113 <1

90 1.2 1942 16 <20 179 9

37 2

19:81 17 <20 209 <1

331 45 83 31 20 22 <1

225 11.4 230 23 <20 14 <1

76 19.8 192 22 <20 66 <1

62 13.8 86

1 <20

<1

66 6.8 320 15 <20 56 <1

53 3.5 498 22 <20 69 <1

38 5.2 239 14 <20 62 <1

so

3.5 437 13 <20 68 <1

64 1000 21

14 <20 13 <1

96

2.4 1016 19 <20 15 30

134 3.6 66 22 <20 <5 <1

52 6.2 706 11 <20 63 <1

44

2.1 716 10 <20 110 <1

37 3.1 490 10 <20 59 <1

54

1.5 1532 7

<20 154 <1

57 0.9 95 17 <20 24 58

45 4.5 1:35 12 <20 30 63

27 0.8 2000 5 <20 <5 5

23 0..25 2000 5 <20 <5 5

22 0.25 734 5 <20 <5 5

135 3.1

184

12 <20 80

5

65

1.1 3800 7 <20 358 <1

42

1.4 1765 16 <20 92 <1

32 0.9 1120 13 <20 <5 95

3.3 9.7 127 5 <20 <5 97

10

1

2000 1 <20

34

10

0.6 2000

1

46

<1

41

1.5 1338 3

99

61

53

6.1

569

12 <20 <5 26

62

0.6

93

14 <20 <5 54

79

1.9 2000 10 <20 <5 <1

70

APPENDIX III. (cont.)

SAMPLE NQ .c.u r12. Zn Mo Ni CQ As. .cr v

351-10 351-12 351-16 351-19 352-31 379-01 379-02 379-09 379-11 379-14 379-30 380-6 381-2 408-5 408-8 409-6 409-17 409-34 410-5 410-10 410-20 410-25 410-34 410-36 411-1 4394
439-11 439-24 43944 439-54 439-58 439-60 439-61 439-68 440-3 440-18 440-39 44047 414-1 441-1 441-2 4414 468-1 472-1

2

6

98 9

5

9

7

14

48 23

4

5

5

5

92

6

5

5

<5

4

126 26

5

5

4

15

82 12

3

6

12 13 186 4

6

5

4

5

42 82 <1

7

5

23 169 9

4

14

5

14 105 3

6

7

11

15

52 38

4

26

40

16 214 53

2

20

5

14

51

7

6

5

6

2

302 <1 <1

3

6

12

92

2

7

6

7

12 143 1

3

5

7

17 204 7

10 12

4

14 158 7

8

12

6

12

78 39

4

17

16

3

96 23

2

1

9

10

147 13

<1

14

3

13 252 9

4

13

4

15 125 5

8

10

3

12 128 3

3

7

4

16 250 3

5

7

3

10

44 15

3

11

4

10 272 6

5

3

<5 <1

25 1

<1 <1

<5 <1

28 1

<1 <1

<5 <1

56 1

<1 <1

9

2

26 22 <1 47

3

11

152 2

5

7

3

12 256 3

3

6

3

12 117 3

<1

2

5

21 248 20 19 19

4

3

61 <1

<1

4

4

2

51

1

<1

<1

4

3

32 2

1

3

9

4

58 10

3

3

1

10

47 16 <1 14

6

6

31 21

1

2

4

35

165 5

<1 36 114 12

2

34

68 4

1

14

96 4

<1

<5

58

5

<1

<5

60

3

6

<5

41 19

6

<5

42 1

<1

8

43 3

3

<5

44 39

9

9

37 8

<1 29

50 4

2

<1

133 1

2

44

45 2

<1

14

25 1

2

8

51 7

3

43

55 4

<1

<5

77 2

1

<5

58

2

11 15

70 3

2

38

41

2

<1 38 130 8

<1 33

18 2

4

15

28 3

15

17

83 <1

<1

<5

75 <1

<1

<5

75 1

<1

17

74 1

<1

6

68

1

38

64

20 1

<1

29

63 4

2

38

35 3

<1

<5

92

3

5

45

98 19

<1 <1 120 1

3

<1

151 3

3

<1

145 3

<1 <5 192 7

17 13

80 <1

<1

7

100 3

71

APPENDIX III. (cont.)

SAMPLE y

Cd Bi

w

SQ 1.a

Zr

351-10 351-12 351-16 351-19 352-31 379-01 379-02 379-09 379-11 379-14 379-30 380-6 381-2 408-5 408-8 409-6 409-17 409-34 410-5 410-10 410-20 410-25 410-34 410-36 411-1 439-4 439-11 439-24 439-44 439-54 439-58 439-60 439-61 439-68 440-3 440-18 440-39 440-47 414-1 441-1 441-2 441-4
468-1 472-1

9

5

40

<5

<5

4

42

6

<1

14

7

<1

2 <1

<1

15

7 47

<1 <1

4

7

4

8

6

15

<1

3

6

60

<1 <1

2 13

2 <1

<1 40

5

<1

<1 31

<1 <1

4 48

48 23

<5 12

<5 22

16

5

2 15

1 <1

<1 <1

<5 5

<1 <1

<1

5

4

<1

3

<1

2

<1

2 32

2

<5 5

<1

<5 5

1.9 <5 10

0.8 <5 10

<1

13

5

<1

<5 5

<1

<5 5

2

<5 5

<1

<5 5

<1

<5 11

<1

<5 5

<1

<5 5

2

7

2

<5 5

<1

<5 5

<1

<5 5

<1

<5 5

1

<5 5

<1

<5 5

<1

<5 5

<1

<5 5

<1

<5 5

1

<5 5

<1

<5 5

<1

13 5

<1

<5 5

<0.5 <5 10

<0.5 <5 10

<0.5 <5 10

<0.5 <5 10

1

<5 5

<1

<5 5

2

6 5

4.5 <5 10

1

<5

1

10

2

16

<1

<5 5

2

<5 5

<1

<5 5

<5 <1 5

6

28 11

9

<5 11

<5 <5 9

24

5 11

<5 21 7

<5 68 80

<5 41 6

<5 2 20

<5 15 8

<5

7

12

<5 3 16

<1 11

<5

3 24

<5

2

17

<5 6 26

<5

4 23

<5 <1 11

6

1 16

<5

7

8

<5

7

17

<5 17 19

<5 2 18

<5 3 22

<5 13 21

14 <1 10

<5 <5 <5

<5 <5 6

<5 <5 5

<5 <5 36

<5

3

14

<5

4 15

<5 <1 11

<5 18 20

1 14

<1 31

<1 23

<5 <1 13

<5

6 21

<5 <1 10

72

APPENDIX III. (cont.)

SAMPLE K

H.aLRb. Rb/K20Rb/Sr K/Rb

351-10 351-12 351-16 351-19 352-31 379-01 379-02 379-09 379-11 379-14 379-30 380-6 381-2 408-5 408-8 409-6 409-17 409-34 410-5 410-10 410-20 410-25 410-34 410-36 411-1 439-4 439-11 439-24 439-44 439-54 439-58 439-60 439-61 439-68 440-3 440-18 440-39 440-47 414-1 441-1 441-2 441-4 468-1 472-1

102075 0.84 79170 13.02 112863 3.70 117842 3.02 107884 6.56 92116 93776 57261 6639 124481 3.46 44232 1.62 74606 10.73 96266 2.90 11037 0.53 5643 3.48 41660 0.40 58340 0.22 85477 0.36 104564 0.65 91286 0.43 93776 0.83 4896 1.62 103734 2.23 77759 0.09 99585 2.19 79004 2.29 107884 0.91 107884 4.47 42241 0.55 84647 0.35 78008 9.22 97095 7.17 94606 2.12 7303 5.26 94606 17.43 112033 5.96 102905 2.51 66390 0.35 112863 10.05 88797 7.22 42905 10.97 26971 4.45 43485 0.53 45975 17.86

33.58 20.13 28.75 24.58 11.54 32.43 31.42 59.42 25.00 33.27 71.29 20.13 58.79 117.29 97.06 95.22 56.19 86.41 60.87 50.00 46.81 22.03 36.40 79.51 26.83 32.77 41.23 26.38 33.99 37.84 23.09 23.85 30.35 39.77 19.12 21.93 36.05 45.75 14.63 25.89 23.60 39.38 33.59 20.22

8.98 0.56 5.01 6.58 0.87 0.03 0.03 0.02 0.04 2.61 4.81 1.01 3.57 10.40 4.40 14.48 9.88 22.82 13.70 10.38 9.45 0.20 4.14 93.13 2.33 2.38 7.77 1.48 8.24 7.88 0.63 0.63 2.77 5.00 0.85 0.82 4.56 8.13 0.44 0.76 0.29 0.69 13.54 0.33

247.15 412.34 288.65 337.66 719.23 255.88 264.16 139.66 331.95 249.46 116.40 412.19 141.15 70.75 85.50 87.15 147.70 96.04 136.33 165.98 177.27 376.64 227.99 104.37 309.27 253.22 201.28 314.53 244.17 219.29 359.49 348.01 273.43 208.65 433.97 378.49 230.21 181.39 567.15 320.57 351.68 210.71 247.08 410.49

73

APPENDIX IV.
Analytical Parameters
Samples analyzed by Bondar-Cicgg were by inductively coupled plasma spectroscopy, direct coupled plasma spectroscopy, atomic absorption spectroscopy, gravimetric analysis, x-ray fluorescence, and specific ion analysis.

ELEMENT

Cu Pb Zn Mo Ni Co Cd Bi As Sb Te Ba Cr
v
Sn
w
Li Be Ga La
Ce Ta Sc Nb Sr y
Zr F Rb
Al203 CaO
Fe2o3
K20 LOI MgO
Na2o
P20s Si02 Ti02 TOTAL BaO
Cr203

Copper Lead Zinc Molybdenum Nickel Cobalt Cadmium Bismuth Arsenic Antimony Tellurium Barium Chromium Vanadium Tin Tungsten Lithium Beryllium Gallium Lanthanum Cerium Tantalum Scandium Niobium Strontium Yttrium Zirconium Fluorine Rubidium Alumina Calcium Oxide Total Iron Potassium Loss on Ignition Magnesium Oxide Soda Phosphorous Oxide Silica Titanium Oxide Whole Rock Total Barium Oxide Chromium Oxide

LOWER DETECTION EXTRACTION

LIMIT

METHOD

1 ppm 2ppm 2ppm 2ppm 1 ppm 1 ppm 2ppm 5ppm 5ppm 5ppm 10ppm Sppm 2ppm 2ppm 20ppm 20ppm 2ppm 0.5 ppm 10ppm Sppm 0.5 ppm Sppm 0.2 ppm Sppm 1 ppm Sppm Sppm 20ppm Sppm O.D1% O.Q1% 0.01 '7o 0.()1 % 0.01% 0.01% 0.()1 % 0.()1 % 0.()1 %
0.01% 0.01% 0.001% 0.01 'Vo

MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD NONE MATD MATD MATD MATD MATD MATD KHF NONE MATD MATD MATD MATD MATD MATD MATD MATD MATD MATD
MATD MATD

ANALYSIS METHOD
ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP AA ICP ICP INA ICP INA ICP ICP ICP ICP
51
XRF DCP DCP DCP DCP GRAVIMETRIC DCP DCP DCP DCP DCP
DCP DCP

74

APPENDIX IV. (cont.)

EXPLANATION: MAID = multi-acid total digestion
= KHF potassium hydroxide fusion
ICP =inductively coupled Argon plasma
51 =specific ion
XRF =x-ray fluorescence
DCP = direct coupled plasma AA =atomic absorption

Samples analyzed by Skyline Labs, Inc. were by inductively coupled plasma spectroscopy.

ELEMENT

LOWER DETECTION LIMIT

EXTRACTION METHOD

ANALYSIS METHOD

Zn

Zinc

Sppm

MATD

ICP

Ba

Barium

50 ppm

MATD

ICP

Li

Lithium

2ppm

MAID

ICP

Be

Beryllium

2ppm

MAID

ICP

Cs

Cesium

lOppm

MATD

ICP

Ga

Gallium

10ppm

MATD

ICP

Ta

Tantalum

Sppm

MATD

ICP

Nb

Niobium

Sppm

MATD

ICP

Sr

Strontium

1 ppm

MATD

ICP

Sn

Tin

2ppm

MATD

ICP

F

Fluorine

lOOppm

KHF

ICP

Rb

Rubidium

Sppm

NONE

XRF

CaO

Calcium Oxide

0,01%

MATD

ICP

K20

Potassium

0,01%

MATD

ICP

Na20

Soda

0,01%

MATD

ICP

Si02

Silica

O.Ql%

MATD

ICP

Ti02

Titanium Oxide

O.ol%

MATD

ICP

EXPLANATION : MATD =multi-acid total digestion KHF = potassium hydroxide fusion ICP = inductively coupled Argon plasma SI =specific ion XRF = x-ray fluorescence AA =atomic absorption

75

Mine
UPSON COUNTY Adams mine Atwater mine
Barron mine
Bell
Bentley prospects J.M. Bevell deposit BlountNo.1 mine Boytmine L.M. Brooks prospect Brown mine Mica pitS of Brown mine Carter mine
Colbert mine Corley mine Corley prospects S.P. Cronheim prospect Cumbie prospects
Cunningham prospect W.M. Dallas prospects Duke mine D.C. Ellerbee prospect B.S. Gibson prospects
Grace prospect Herron mine Johnson mine King and Thurston mine Mauldin mine Mauldin Road prospect Maze prospects Helen McDonald prospect Joe McKinley prospect Cliff Middlebrooks deposit Mitchell Creek mine Short Mitchell mine Charlie Nims mine Nottingham prospects
Kelly O'Neal prospects

APPENDIX V.

ATTITUDES OF PEGMATITES

Strike

Dip

Reference

135

60SW

1,2

055

SE

1,2

050

3

010

75 SE

1

020 to 035

3

000

1

040

1

160 NNW 090 055 035 010 090 015

65WSW

2

WSW steep

2

405

1,2

60 to 70 SE

1

3

61 NW

1

66 s

1

75 SE

1,2

020

steep

2

127

38NE

1,2

052

1,2

124

50SW

1,2

041

1

005

SE steep

1,2

145

040

78NW

1,2

090

665

1,2

055

85SE

1,2

040

2

018

90

2

095

70 to 80N

2

030

ESE

1,2

016

73 SE

1

045

2

040

40SE

2

110

NNE

1,2

065

1,2

052

83NW

1,2

070

20-30 SE

1

010

1

112

1,2

080

39 SE

1,2

035

67SE

1,2

040

SE

1

NNW toNNE

W steep

2

152

57SW

1

76

Mine
Partridge mine Pennyman mine Joe Persons mine
T.J. Reeves prospect Reynolds mine Stevens-Rock mine
and Thompson prospect
F.E. Thompson prospect Tomlin mine Emmit Trice Triune Mills No.1 prospect Unnamed prospect Walker prospect Watson mine Wheeles mine Young mine Zorn mine 439-3S 439-39 439-40 Swift Creek mine 439-52 439-S8 439-64 440-33
440-40
LAMAR COUNTY
J.W. Brown deposit Clay Cheek mine Old Childs prospect Coggins prospect Howard mine Ingraham prospects
Doc Irwin prospect
H.B. Manrey prospect Means prospect J.T. Means mine

APPENDIX V. (cont.)

Strike

Dip

Reference

16S

6SW

2

03S

70SE

2

oso

SE

2

oso

70NW

1,2

030

SE moderate

2

070

2

140

90

1,2

12S

sw

1,2

040

90

1,2

02S

7S SE

1,2

1SS

80SW

1,2

170

77NE

1

oos

7SW

3

008

BOW

3

028

6S SE

1,2

01S

2

OS6

NW steep

1,2

01S

82E

2

1S6

90

1,2,3

NE

SE mod. to steep

2

068

90

2,3

090

N shallow

2

060

2

03S

3

02S

SSE

3

3

082

3

16S

90

3

17S

64E

3

16S

3

05S

3

040

3

038

90

2

07S

1,2

030

7S to80WNW

2

30N

2

025

1,2

oss

90

1,2

040

1,2

060

75 SE

1,2

020

7SE

2

010

3SW

2

77

Mine
Perdue prospect Sugar Hill prospects Taylor prospect ].I. Taylor prospects
Thomas mine Early Vaughn mine Williams and Holmes prospects H.S. Worsham prospect 349-16 349-19 379-12 to 16 379-17,18 379-30
410-32
PIKE COUNTY
3481 376-1 376-3
TALBOT COUNTY
438-7
MONROE COUNTY
Battles mine Willie Bowdoin prospect Brooks mine E. B. Butler prospect Calloway mine Old Callaway prospect Chatfield mine O.B. Clements prospect Coleman prospect Cox prospect C.A. Ensign mine 380-7 Fletcher mine Rosa Fletcher prospect E.J. Goggins propsect L.P. Goodwin prospect Homer Hardin mine
Haygood prospect Holloway mine

APPENDIX V. (cont.)

Strike

Dip

Reference

00

52NW

1

045

SE

1,2

60E

2

170

1,2

150

45SW

1,2

020

45SW

1,2

015

WNW steep

1,2

110

1

090

45N

1,2

112

3

050

3

045

65NW

3

030

3

007

20W

3

007

25E

3

090

3

010

90

3

025

90

3

120

90

3

065

3

136 020
105
030 090 125
00 to 030
030 070 00
131
155
138
040 150 045 045 to 070

85SW

1,3

30 E

1,2

3

65 ESE

1,2

2

70NE

1,2

2

30 E to ESE

1,2

45 to SO ESE

1,2

3

45W

1,2

90

1,2

75E NE

1,2

75 to BONE

1,2

64 SE

1,2

75NE

1

1,2

2

78

APPENDIX V. (cont.)

Mine

Strike

Dip

Holmes mine New Ground mine
L.D. Owen prospect
Owl Hollow prospect Rev. Thaddeus Persons mine
Persons northeast prospect
Persons west prospect Peters mine Phinazee mines
A.T. Redding prospect Ruffin prospects Mattie Smith mine Wallker Smith mine
C.M. Sutton prospects Thurman mine
Marie Vaughn deposit
Westbrooks prospect F.B. Willingham prospect Worsham and Goodwin prospect Lassiter Rd. prospect

070 015 00 085 025 010 125 110 062 070
160 150 010 100 122 008 010 020 159 090 010 140 170 154 120 to 140 030 052 135

6070 SE 74 E
45S 45 SE 70E
steep
90 75 SE
90 75 to 80 SE 45 E 60SE
90
SW to SSW 50 to 70 ESE 60SE steep

Explanation: Strikes arc given in degrees azimuth Dips are given in degrees (var =variable) Reference

1 = Furcron and Teague (1943) 2 =Heinrich and others (1953) 3 =This investigation

Reference
1,2 1,2
1,2 1 1,2 1,2 3 1,2 3
2 1,2 1 3 1,2 1,2 1,2 3 1,2 1 3 3 1,2 1,2 1,2 1,2 1,2 3

79

APPENDIX VI.

ATTITUDES AND LITHOLOGIES OF COUNTRY ROCKS

Mine

Strike Dip Rock Type Reference

UPSON COUNTY

Adams mine

140 70SW garbgg

1,2

Atwater mine

070 var bg,g

1,2

Bell

042 40SE bg

1

L.M. Brooks prospect

oso S0-70 SE

1,2

Brown mine

oss 60-70SE bg

1

Mica pit S of Brown mine 143 S7NE bg

3

439-6,7

Cumbie prospects

oss SOSE bg

1,2

W.M. Dallas prospects

080

garbag

1

047 60SE ms

1

B.S. Gibson prospects

040 78NW bgg

1,2

090 66SE s

1

King and Thurston mine 030 SE bg

1,2

Mauldin mine

016 73 SE bg

1

Cliff Middlebrooks deposit 070 20-30SE garbg

1,2

Charlie Nims mine

090 30N bg,bs,g,s

1,2

Nottingham prospects

080 39 SE bg

1,2

040 6S SE granbg

1

Kelly O'Neal prospects

070 SO SE ms

1,2

060 S2SW bg

1

Reynolds mine

bgg

1,2

Stevens-Rock mine

garbgg

1,2

Thompson prospect

012 60SE ms

1

F.E. Thompson prospect

s

1,2

Tomlin mine

gbg

1,2

Walker prospect

baugg

1,2

439-39

oss

3

LAMAR COUNTY

H.B. Manrey prospect

026 90

bg,s,bag1

J.T. Means mine

046 60 SE gr,bg

1

].I. Taylor prospects

090 90

grms

1,2

Thomas mine

grbg

1,2

Early Vaughn mine

garbg

1,2

Williams & Holmes prospects 030 70SE grgarbg

1

H.S. Worsham prospect

ms

1,2

379-12 to 16

102 30NE bg

3

379-17,18

010 60E ss

3

379-29

073 BON gorbg

3

MONROE COUNTY

Battle mine

bg,gr

Willie Bowdoin prospect

grbg

1,2

Brooks mine

160 sow bg

3

80

APPENDIX VI. (cont.)

Mine

Strike Dip Rock Type Reference

E.B. Butler prospect

030 65 SE bg

1,2

Calloway mine

augg

1,2

Old Callaway prospect

125 70NE

1,2

O.B. Clements prospect

grms

2

Coleman prospect

00-030 30 E,SE bg

1,2

Cox prospect

bg

1

E.J. Goggins prospect

155 75NE s

1,2

Homer Hardin mine

s

1,2

Holmes mine

bg,gr

1,2

L.D. Owen prospect

025 45SE ms

1,2

Owl Hollow prospect

hg,gr

1,2

Rev. Thaddeus Persons mine 050 20-50 SE bgrg

1,2

Persons northeast prospect 152 18SW bg

1,2

Ruffin prospects

bg

1,2

Mattie Smith mine

016 40 SE ms

1,2

Walker Smith mine

gr?

1,2

C.M. Sutton prospects

040 51 SE ms

1,2

Thurman mine

146 60SW bg,gr

1

Westbrooks prospect

ms

1,2

F. B. Willingham prospect 010 30-60 SE bg

1,2

Worsham &Goodwin prospect 065 80SE

1,2

PIKE COUNTY

352-32 348-4

030 90

hg

3

025 75W ms

3

Explanation: Strikes are given in degrees azimuth Dips are given in degrees (var =variable) Rock type bg =biotite gneiss ms = muscovite schist gr =granite bgrg= hg =hornblende gneiss baugg =biotite augen gneiss gbg =granitic biotite gneiss s =schist bag= biotite augen gneiss garbag =garnet biotite augen gneiss g =gneiss

Reference

1 = Furcron and Teague (1943) 2 = Heinrich and others (1953) 3 =This investigation

81

Notes

For convenience in selecting our reports from your bookshelves, they are color-keyed across the spine by subject as follows:

Red Dk. Purple Maroon Lt. Green Lt. Blue Dk. Green Dk. Blue Olive
Yellow
Dk. Orange Brown Black Dk. Brown

Valley and Ridge mapping and structural geology Piedmon and Blue Ridge mapping and structural geology Coastal Pla ln mapping and stratigraphy Paleontology Coastal Zone studies Geochemical and geophysical studies Hydrology Economic geology Mining directory Environmental studies Engineering studies Bibliographies and lists of publications Petroleum and natural gas Field trip guidebooks Collections of papers

Colors have been selected at random, and will be augmented as new subjects are published.

Editor and Cartographer: Mark D. Cocker
Publications Consultant Patricia A. Allgood
$2310/ 500

The Department of Natural Resources is an equal opportunity employer and offers all persons the opportunity to compete and participate in each area of DNR employment regardless of race, color, religion, sex, national origin, age, handicap, or other non-merit factors.