II GA' Tioo.~4 5\ c.~ c+ ; l oo"J.. fl!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~ GEORGIA DOT RESEARCH PROJECT 8906 FINAL REPORT . I' CEMENT MODIFICATION OF . MICACEOUS SUBGRADE SOILS IN GEORGIA OFFICE OF MATERIALS AND RESEARCH RESEARCH AND DEVELOPMENT BRANCH iI TECHNICAL REPORT STANDARD TITLE PAGE 1. Report No. FHWA-GA-02-8906 2. Government Accession No. 4. Title and Subtitle Cement Modification of Micaceous Subgrade Soils in Georgia 7. Author(s) David Jared, Special Research Engineer 3. Recipient's Catalog No. 5. Report Date March 2002 6. Performing Organization Code 8. Performing Organ. Report No.: 8906 9. Performing Organization Name and Address. Georgia Department of Transportation Office of Materials and Research 15 Kennedy Drive Forest Park, Georgia 30297-2599 12. Sponsoring Agency Name and Address Georgia Department of Transportation Office of Materials and Research 15 Kennedy Drive Forest Park, Georgia 30297-2599 10. Work Unit No. 11. Contract or Grant No. .. 13. Type of Report and Period Covered Final; 1993-1997 14. Sponsoring Agency Code 15. Supplementary Notes Prepared in cooperation with the U.S. Department of Transportation Federal Highway Administration 16. Abstract The objective of this project was to study the effect of cement stabilization of micaceous soils. GDOT constructed test sections with subsections using varying thicknesses of cement-modified micaceous subgrade soil (CMMSS), with variations in the amount of cement used within the subsections. These /sections were compared with unmodified control sections. Lab tests performed during construction on the soil cement designs from the test sections indicated that the compressive strength of the soil improved with increased cement percentage, yet not enough to meet the. GDOT minimum requirement. Annual pavement evaluations of the test and control sections were conducted fro~ 1995 to 1997, including visual assessment, rut measurements, and falling weigh( deflectometer (FWD) testing. Also, optimal levels of CMMSS thickness and cement percentage were determined, based on the effect of these two variables on the elastic modulus of the soil and on construction costs. Per the evaluations, the cement generally appears to have strengthened the micaceous' soils to which it was added. M~l visual distresses were observed. The deflections obtained in each test section from the FWD runs' generally decreased linearly as depth of cement modification increased. Per the FWD data collected, deflections are primarily based on the thickness of the CMMSS layer and rely little upon cement percentages. As CMMSS thickness increases, elastic modulus and service life generally increase, and for each CMMSS thickness, higher cement percentages generally yield higher elastic moduli and seryice lives. It was determined to be most cost effective to use the CMMSS thickness and cement percentage where elastic modulus increases due to higher levels of these variables maximize. If the CMMSS thickness is increased to ,this level, the cement percentage should also be increased to ensure adequate compressive strength. 17. Key Words Micaceous soils, soil cement, subgrade construction 18. Distribution Statement 19. Security Classif. (of this report) Unclassified 20. Security classif. (of this page) 21. No. of Pages Unclassified 78 22. Price Form DOT 1700.7 (8-69) .GEORGIA DEP~RTMENTOF TRANSPORTATION OFFICE OF MATERIALS AND RESEARCH I: Finat Report GDOT Research Project 8906 Cement Modification of Micaceous Subgrade Soils in Georgia David M. Jared Special Research Engineer Research and Development Branch , March 2002 The contents of this report reflectthe views of the author, who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Georgia Department of Transportation or . the Federal Highway Administration. This report does not constitute a standard, specifi,cation, or regulation. I II I I i I TABLE OF CQNTENTS II I I I Section II I Executive Summary ii III List of Tables .~ : iii Ii 1 1.il 1.0 Introduction 2.0 Objectives II II 3.0 Test Site Layout , , , 1 1 1 11 I Ii 4.0 Test Section Construction 5.0 Mix Design Results ;"' ~: : : : .. I 6.0 'Initial Pavement Evaluation Ii 6.1 Visual Inspection and Rut Measurements 2 6 6 6 6.2 Falling Weight Deflectometer Testing 7.0 Optimal Levels of Cement Modification : ; 10 12 8.0 Conclusions and Recommendations .. 13 Appendices A: Test Section Layouts .R Special Provision for Test Section Construction C. GDOT Standard Specifications 300 and 301 D. Rut Measurements E. FWD Nonnalized Deflections F. Elastic Moduli and Other Data from FWD Readings G. Supporting Data on Optimai CMMSS Thickness and Cement II Percentage EXECUTIVE SUMMARY Micaceous soils of Georgia's Piedmont region pose stability problems similar to heavy clays. The objective of this project was to study the effect of using cement for the stabilization of micaceous soils. GDOT constructed test sections with subsections using varying thicknesses of cement-modified micaceous subgrade soil (CMMSS), with variations in the amount of cement used within the subsections themselves. These sections were compared with unmodified control sections. GDOT constructed three 1200-foot test sections in micaceous soils on a new construction project located in the Piedmont region, the Buchanan Bypass (State Route llUS 27). The test sections lie in the southbound outside lane. At the time of the evaluation, this section of the Bypass sustained 100,000 equivalent single-axle loads in the southbound direction. During construction, laboratory tests were perfomied on the soil cement designs for the test sections. The test results indicated that the unconfined compressive strength (fe') of the soil improved proportionally to an increase in the cement percentage used, yet not enough to meet the GDOT minimum requirement of 300 psi for fe'. This requirement might be met if the cement percentage is increased to at least 12%. Following construction falling weight deflectometer (FWD) testing was performed to determine the structural capacity of pavement layers in the control and test sections. F~ readings indicated that the control sections with no stabilized . subgrade were much weaker than the sections with cement stabilization. , Annual pavement. evaluations . of each of the test and control sections were conducted \. from 1995-97, including visual assessment of pavement surface distress, m~nual rut measurements, Ii and FWD testing. Optimal levels of CMMSS thickness and cement percentage were determined, based on the effect of these tWo variables on the elastic modulus' (Me) of the soil and on construction costs. Per the evaluations, the cement generally appears to have strengthened the micaceous soils to which it was added. Minimal rutting and other visual distresses were observed. The deflections obtained in each test section from the FWD runs'generally decreased linearly as depth of cement modification increased; however, a minor increase in the overall magnitude of the deflections was observed over time, due to general wear of the pavement. Per the FWD data, deflections are primarily based on the thickness of ,the CMMSS layer and rely little upon cement percentages. As CMMSS thickness increases, Me and projected service life generally increase, and for a given CMMSS thickness, higher cement percentages generally yield higher Me and projected' service lives. The average projected service lives of nearly all test subsections remained high for the first three years of the evaluation, but began to fall thereafter. The largest drops were noticed in the subsections with lower CMMSS thickness. It was determined to be most cost effective to use the CMMSS thickness and cement percentage where Me increases due to higher levels of these variables maximize. It IS projected that this would occur once a CMMSS thickness of 14 in. is reached. If the CMMSS thickness is increased to 14 in., the' corresponding cement percentage should be increased to at least 12% to ensure adequate compressive strength. ' Further laboratory tests and co'st analysis of CMMSS with a thickness of 14 in. and cement percentage of 12% or more should be considered. Also, a follow up evaluation of the control and test sections should be conducted. If the service life has decreased quickly since the conclusion of the project or decreases quickly in the next 1-2 years, this may indicate that the modification serves more as an extended delay to pavement deterioration rather than as a preventive measure. 11 I I, LIST OF TABLES I TABLE III 1. Test Section 1 Classification and Laboratory Test Results PAGE 3 2. Test Section 2 Classification and Laboratory Test Results 4 II'I 3. Test Section 3 Classification and Laboratory TestResults 5 IIII, 4. Test Section 1 Soil Cement Design Results 7 II I 5. Test Section 2 Soil Cement Design Results .. 8 Ii 6. Test Section 3 Soil Cement Design Results .. .. 9 I 7. Rut Measurements from Annual Pavement Evaluations 10 II 8. Average Deflections (mils) for CMMSS Test Sections: 1995-97 Evaluations 10 9. Comparison of Average Deflections in Control and Test Sections 11 10. Decrease in Deflections from 1995-96 11 11. Increase in Deflections' from 1996-97 11 12. Reiationship between CMMSS Thickness/Cement Percentage and Elastic Modulus/Service Life..' .. 12 13. Cost per Mile for Cement Modification :.. 13 14. Cost Increases Associated with Increasing Cement Percentage & CMMSS Thickness : 13 Ii Iii iii 111 1,~ CEMENT MODIFICATION OF MICACEOUS SUBGRADE SOILS IN GEORGIA 1.0 INTRODUCTION , Extensive road building in Georgia over the last 30 years has greatly reduced the availability of Class I and II soils for subgrade construction in the Piedmont and Ridge and Valley Regions of the state. This lack of quality soils has caused significant increases in construction costs, since thicker sections of base and paving are required to bridge the poorer classes of subgrade soils. To provide better subgrade conditions in areas of highly clayey soils,' the Georgia DOT chemically stabilizes highly clayey soils with lime. The increase in bearing capacity of these soils, resulting from the lime stabilization, has allowed reductions in base and paving thicknesses and net savings of $3-$5/sq. yd. on typical sections. Micaceous soils of the Piedmont Region, however, pose stability problems similar to heavy clays, and these problems have not yet been fully addressed. Experience has shown that lime does not react well with these soils. Lime-fly ash modification of these soils could be effective in the long run, but soil strength develops slowly using this method, and immediate construction stability cQuld be a problem. The addition of lime and fly ash also increases construction costs, since, both :materials are relatively expensive and two mixing operations are involved. Cemen~, on the other hand, may offer a viable and economical alternative to lime-fly ash or .conventional design/construction procedures for micaceous soils. Laboratory experiments indicate that cement reacts favorably with most micaceous soils. Even the poorest of these soils, those with extremely low densities and high volume changes, have undergone significant physical property changes with the addition of as little as 2% cement.' 2.0 OBJECTIVES The overall objective of this project was to study the effect of utilizing cement in micaceous soils. The specific objectives of the project are given below: 1. Construct test sections with subsections using varying thicknesses of cement-modified micaceous subgrade soil (CMMSS), with variations in the amount of cement used within the subsections themselves. Compare test sections with unmodified control sections. 2. During construction, conduc~ laboratory'tests on the soil cement designs for the test sections. Following construction, extract core specimens for additional laboratory testing and perform falling weight deflectometer (FWD) testing to determine the structural ' capacity of pavement layers in the ~ontrol and test sections. 3. Conduct annual pavement evaluations for each of the test sections and their respective control sections. The evaluations would include visual assessment of pavement surface distress, manual rut measurements, and FWD testing as above. 4. Determine optimal levels of CMMSS thickness' and cement percentage, based on the effect of these two variables on the elastic modulus of the soil and on construction costs. 3.0 TEST SITE LAYOUT GDOT constructed three 1200-foot test sections in micaceous soils that represent the upper limits of a Class lIlA soil ahd the mid-range and upper limits of a Class IIIB soil. The new GDOT soil classification numbers for these two classes of soil are IIB4 and IIICl/111C2/I11C3, respectively. The new classification numbers will be used in the remainder of this report. GDOT opted to construct the test sections on a new construction project .located in the Piedmont geologic region. After reviewing a number of candidate projects, the Buchanan Bypass (SR1/US 27) was selected for the test site construction. A section detail for all three test sections is shown in Appendix A. The three test sections are located between the following stations: (1) 427+00 to 439+00; (2) 445+00 to 457+00; and (3) 489+00 to 501+00. The test sections lie in the southbound outside lane between Milepost (MP) 7.88 (north end) and MP 6.48 (south end). In 1995-96, the average daily traffic (ADT) for this II section of the Bypass in the northbound and southbound directions was 4900 and 7700, respectively, with truck percentages of 9.8% in both directions. These ADTs and truck percentages resulted in equivalent single-:axle loads of 60,000 and 100,000 for the northbound and southbound directions, respectively. \ The thicknesses of the layers in the control and test sections are shown below. All Sections 1-112 in. asphaltic concrete HE" 2 in. asphaltic concrete "B" 3 in. asphaltic concrete base 12 in. graded aggregate base Subgrades 12 in. CMMSS (Subsection 1) 9 in. CMMSS (Subsection 2) 6 in. CMMSS (Subsection 3) . 12 in~ untreated subgrade (control) The subgrade material in the three test sections was required to meet the specifications below. Soil classifications under the previous system are given in parentheses. 1. Test Section (TS) 1 - The top 12 in. of roadbed shall consist ofa class IIB4 & IIICI (IlIA) soil having volume change properties in the range of 18-25%. 2. TS2 - The top 12 in. of roadbed shall consist of a class IIIC2 & IIIcr (IIIB) soil having volume change properties in the range of 28-35%. 3. TS3 - The top 12 in. of roadbed shall consist of a class IIIC3 (IIIB) soil having volume change properties in the range of37-50%. 4.0 TEST SECTION CONSTRUCTION For the test section construction, a special provision was included in the Buchanan Bypass' construction contract (see Appendix ,B). Ellard Contracting Co., Inc., was the prime contractor for the Buchanan Bypass. Ellard subcontracted the cement stabilization work to J.A~ Long, Inc. To obtain the specified subgrade material for each test section, the contractor mined and stockpiled the material. First, an area with micaceous material that met the classification requirements was located by utilizing the Buchanan Bypass soil survey. Soil samples were taken from this are" .'" . "'''iIUIiI . _.iiii .. ' .. .. '.~"":" ' i ",I~~,~i~:l,'-r.~"";;:l*- Z cnQ 3 (I) ~ D) cr N=: _.". cg ,::s (I) NO."", -c;o0(l)m(I) ee< NInn:0::_n(_I:).!:l<0 _0 ::s en 44695 44595 44495 II Cl Cl Cll Cll ::!I ::!I Cll Cll r0- r0- ~ -" x ,.~ .... Figure E-10 Normalized Deflections. Section 3 (8-26-96) 40 35 30 -~ 25 'E c 0 20 ;l CJ ;Q;:) cQ) 15 10 -Deflect. 1 -Deflect. 7 (x4) " 5 0 In In In In In In In In In In In In In 0> 0> 0 0> 0> <0 0> I"- 0> <0 0> In 0> ~ 0> C') 0> N .0...>.. 0> 0 0> 0> 0> <0 0 0> 0> 0> 0> 0> 0> 0> 0> 0> 0> <0 <0 In ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Station Number Figure E-11 '. Normalized Deflections Section 1 (7-22-97) .40 35 30 - 25 ~ . c ;0: 20 CJ CI) ;;: cCI) 15 -Deflect. 1 --Deflect. 7 (x4) 10 5 0 LO LO LO LO LO LO LO LO LO LO LO LO LO 0> 0 0 l"- 0 CD. 0 LO 0 '<:t 0 C") 0 N .0.- 0 0 0 0 0 0> l"- C") C") C") C") C") C") C") C") C") C") N N N '<:t '<:t '<:t '<:t '<:t '<:t '<:t '<:t '<:t '<:t '<:t '<:t '<:t Station Number Figure E-12 . Normalized Deflections Section 2 (7-22-97)" . 25 20 -"e.!!!.15 -co ; CJ G) ;;:: cG) 10 -Deflect. 1 --Deflect. 7 (x4) 5 r 0 Il) Il) Il) Il) Il) Il) Il) . Il) Il) Il) Il) Il) . Il) 0> (0 Il) -.r 0 0 (0 Il) Il) -.r .-I.lr) 0-.r .0 ('t) Il) Il) -.r -.r 0 N Il) -.r .0.... Il) -.r 0 0 Il) -.r 0 0--..>rr 0 t--..orr .0--.....rr. 0 (--..0rr 0 Il) --..rr Station Number 1 I""' - ~ .-.- Figure E-13 Normalized Deflections Section 3 (7-22-97) 50 40 .~ -"e ;co: 30. U GI ~ C 20 - - Deflect. 1 --Deflect. 7 (x4) 10 0 mLO 0 0 LO LO 0 0 0 LO LO LO 0mm -c0o m """ """ LO 0 Im"- .",," LO LO LO 0 0 0 20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 20 >20 >20 >20 18 >20 \ >20 >20 14 >20 >20 >20 8 >20 >20 >20 12 >20 >20 >20 10 >20 >20 >20 9 0 0 1 0 1 1 2 0 2 1 3 0 457-456 - 456-455 - 455-454 - 454-453 6 453-452 6 452-451 6 451-450 9 450-449 9 449-448 9 448-447 12 447-446 12 446-445 12 439-438 - 438-437 - 437-436 - 436-435 6 435-434 6 434-433 6 433-432 9 432-431 9 431-430 9 430-429 12 429-428 12 428-427 12 - N/A - >20 - -6 7 - 4 8 4 >20 >20 6 >20 >20 8 >20 >20 4 >20 >20 6 >20 >20 8 >20 >20 ,4 >20 >20 6 >20 >20 8 >20 >20 , - 1 1 - 1 1 - -1. 1 4 '>20 >20 6 >20 >20 8 >20 >20 4 >20 >20 6 >20 >20 8 >20 >20 4 >20 >20 6 >20 >20 8 >20 >20 20 3 12 1 13 1 >20- 12 >20 10 >20 9 >20 13 >20 9 >20 14 >20 >20 >20 >20 >20 >20 3 0 2 0 2 0 >20 5 >20 6 >20 9 >20 12 >20 15 >20 17 >20 17 >20 18 >20 20 II Table F-3 Elastic Moduli: 6/13/94 Station Number. CMMSS (in.) 501-500 12 500-499 12 499-498 12 498-497 9 497-496 9 496-495 9 495-494 6 494-493 6 493-492 6 492-491 - 491-490 - 490-489 - Cement Content (%) 8 6 4 8 6 4 8 6 4 - - - *E1 117.67 113.25 116.75 104 118.67 120.33 111.33 119.33 122.67 89 92.33 , 102.33 457-456 - 456-455 - 455-454 - 454-453 6 453-452 6 452-451 6 451-450 9 450-449 9 449-448 9 448-447 12 447-446 12 446-445 12 - n/a ' - 88 - 84 4 106.67 6 119 8 111.5 4 106 6 119 8 117 4 113 6 118.33 8 98.67 439-438 - 438-437 - 437-436 - 436-435 6 435-434 6 434-433 6 433-432 9 432-431 9 431-430 9 430-429 12 429-428 , 12 428-427 12 - 114.33 - 108.33 - 103.33 4 123 6 131 8 132 4 140 6 139.67 8 132.33 4 129.33 6 121.67 8 111.33 Elastic Moduli (ksi) E2 E3 . ,70.67 35 59 73~75 38.33 36.25 58 . 30.67 45.33 24 42 22.33 45.33 25 44.67 24.67 40 22 9.25 - 10.33 - 12 - n/a 19.33 28.33 50.67 48.5 38.33 52.,67 56:33 51.33 65.33 67.67 52.67 - - 24.67 24 28 27.67 29.67 27.33 36 37.67 29 10.33 9.67 17.67 34;67 33 37.33 38.33 43.33 55 56.33 58.33 73.67 - - 18 16.33 18 20.33 23 28.67 31.33 32 40.33 * E1: Elastic Modulus for Asphalt Layers E2: Elastic Modulus for Base Layer E3: Elastic Modulus for Cement Modified Subgrade E4: Elastic Modulus for Unmodified Subgrade E4 24.67 22.67 19.75 16.67 15.33 15 16.67 17 14.33 3.75 5 . 4.67 n/a 6.67 9.67 18 19 19 19 21 22.67 29.33 30 23 4.33 4 6.33 11 10 12.33 14 20 22.67 25 25 25.67 Ii Table F-4 Elastic Moduli: 8/26/95 Station Cement Elastic Moduli '. Number CMMSS Content (ksi) (in.) (%) *E1 E2 E3 E4 501-500 12 8 295.33 72.33 40 20.33 500-499 12 6 355 72.67 40 18.33 499-498 12 4 325 67.67 37.33 18.67 498-497 9 8 327 54 28.33 14.67 497-496 9 6 348.33 50.33 26.67 14.67 -496-495 9 4 361.67 46.33 24.67 15 .495-494 6 8 305.67 62.33 30.67 17.33 494-493' 6 6 319 47.67 23.33 14.33 Ii 493-492 6 492-491 - 4 330.67 39.33 19.33 12 - 207.33 10 - 4.67 491-490 - - 236 11.67 - 3.33 490-489 - - 232 13 -- 3.33 457-456 - - 225.33 32.33 - 9 II 456-455 - 455-454 - - 200.33 20.33 - 7 - 232 19.67 - 1.33 454-453 6 4 236 51.3 25.33 16 453-452 6 6 243.33 60 29.33 20.7 II 452-451 6 ,8 241 60.3 29.67 14.67 451-450 9 4 236 53.67 28.33 14 450-449 9 6 255.33 58 30.33 18.33 449-448 9 8 228.67 55.33 29 17.33 448-447 12 4 209 83.33 46 27.33 447-446 12 6 245.67 81.67 45 28 446-445 12 8 210.67 72 39.67 25.33 439-438 - 438-437 - 437-436 - 436-435 6 435-434 6 434-433 6 433-432 9 432-431 9 431-430 9 . 430-429 12 429-428 12 428-427 12 - 192.67 13.67 - 3.67 - 183.33 13 - 3.33 - 172 12 - 3.67 4 216.25 39.25 19.25 11 6 217 37.25 18.25 11.75 8 . 201 53 26 14.75 4 197.33 55.33 29.33 17.33 6 209.67 55.67 29.67 19.67 8 228 59 31 17.67 4 185.33 69.67 38.33 26.33 6 175 87.33 48.33 27.33 8 167.67 91.33 50.33 28 * E1: Elastic Modulus for Asphalt Layers E2: Elastic Modulus for Base Layer E3: Elastic Modulus for Cement Modified Subgrade E4: Elastic Modulus for Unmodified Subgrade Table F-5 Elastic Moduli: 9/20/96 Station Number 501-500 500-499 499-498 498-497 497-496 496-495 495-494 494-493 493-492 492-491 491-490 490-489 CMMSS (in.) 12 12 12 9 9 9 6 6 6 - - Cement Content (%) 8 6 4 8 6 4 8 6 4 - *E1 767.25 967.5 822.25 975.25 1044.25 907 873 834.5. 881.25 480 549.5 556.4 Elastic Moduli (ksi) E2 E3 67 37 73.25 40.25 72 39.5 47.75 25.5 43 22.75 43 22.75 43 20.75 40 19.5 34.75 7.33 12 12.2 16.75 - .- . E4 20.75 19.25 . 19.75 16.25 16.5 15.75 16.25 16 14.25 2.67 4 4 457-456 - 456-455 - 455-454 - - 643.5 29.5 - 8 - 569 20 . 6.25 - 506.25 .22.25 - 6.25 454-453 6 4 631.5 40.5 20 13 453-452 6 6 609 52.5 23.25 15.25 452-451 6 8 630.5 45 22 12.25 451-450 9 4 650 48.5 26 18.5 450-449 9 6 609.75 46.5 24.5 15.5 II 449-448 9 8 650 48.5 26 18.5 448-447 12 4 520 65.75 36.25 25.5 447-446 12 6 569.5 68.75 . 38.25 25 446-445 12 8 , 495.5 59 32.5 Z3 439-438 - 438-437 - 437-436 - 436-435 6 435-434 6 434-433 6 433-432 9 432-431 9 431-430 9 430-429 12 429-428 12 428-427 12 - -, - 4 6 8 4 6 '. 8 4 6 8 483.25 431.25 401 520.25 554.5 524.5 651.75 557 593.25 484 494.75 462 13.75 10.25 11 34 32.5 37.5 38.75 43 41.5 56 61.75 61 - - 16.5 16 18.25 22 22.75 22 31 34.25 33.75 16 3.25 3.5 . 9.75 9.5 12.25 14.5 16.25 14.5 22.25 25.5 28 * E1: Elastic Modulus for Asphalt Layers E2: Elastic Modulus for Base Layer E3: Elastic Modulus for Cement-Modified Subgrade E4: Elastic Modulus for Unmodified SUbgrade Table F-6 ' Elastic Moduli: 7/22/97 Ii Station Cement Number CMMSS Content Elastic Moduli (ksi) (in.) (Ufo) *E1 E2 E3 E4 501-500 12 8 414.68 83.5 32.8 18.6 500-499 12 6 578 72.25 35.25 17.75 ,499-498 12 ' 4 "494.75 66.75 32.75 15.75 III 498-497 9 497-496 9 8 475 53.8 28.8 15.8 6 606.8 41.8 21.8 13.3 496-495 9 4 535.3 35.5 19 12 495-494 6 8 540 37.75 21 13.5 Ii 494-493 6 6 615.75 31.25 17.5 '12.25 493-492 6 492-491 - 491-490 - 490-489 - 4 618.5 29 16.25 11.25 - 391 7.5 -, 2.25 - 381.75 10.75 - 3 - 314.75 13 - 3.25 457-456 - 456-455 - 455-454 - 454-453 6 453-452 6 452-451 6 451-450 9 450-449 9 449-448 9 448-447 12 447-446 12 446-445 12 - 501.4 ' 25.4 - 6.6 - 394 19 - 5.5 - 375.5 17.25 - 4.75 4 436.5 47.75 23.5 12.75 6 488.5 40 19.75 10.25 8 515.75 35.5 17.25 9.25 4 588.3 40.5 21.8 12.8 6 469.5 42 20.8 13.3 8 561.3 44.3 23.3 14.5 4 524.75 62.75 34.75 22.5 6 570.25 69.25 38.25 37.25 8 434.75 51.6875 33 20.25 439-438 - 438-437 - 437-436 - 436-435 6 435-434 6 434-433 6 433-432 9 432-431 9 431-430 9 430-429 12 429-428 12 428-427 12 - 366.4 - " 367 - 366.5 4 , 491.25 6 499.5 8 484.75 4 .465.5 6 '516.8 8 500 4 427.8 6 398.75 8 399.5 10.4 8.75 12.75 30.25 30.75 37.25 55.3 46.5 44 55.6 59.75 65.5 - 14.75 15 18.5 29.3 24.5 23.5. 30.8 33 36.25 2.8 2.75 3.75 8 8.5 9.75 17 14.3 12.3 20.8 24.5 22.75 * E1: Elastic Modulus for Asphalt Layers E2: Elastic Modulus for Base Layer E3: Elastic Modulus for Cement-Modifi,ed Subgrade E4: Elastic Modulus for Unmodified Subgrade 1II1: II, I' I . _I.. I',I' IL __ .J Table F-7 Elastic Moduli: Asphalt Layers (E1) 1994-1997 ' Station Number 501-500 500-499 499-498 498-497 497-496 496-495 495-494 494-493 493-492 ,492-491 491-490 490-489 CMMSS (in.) 12 12 12 9 9 9 6 6 6 - - Cement Content (%) 8 6 4 8 6 4 8 6 4 - ,.. - 1994 Year 1995 1996 117.67 113.25 116.75 104 118.67 120.33 11~.33 119.33 122.67 89 92.33 102.33 -.. 295.33 355 325 327 348.33 361.67 305.67 319 330.67 207.33 236 232 767.25 967.5 822.25 975.25 1044.25 901 873 834.5 881.25 480 549.5 556.4 1997 414.68 578 494.75 475 606.8 535.3 540 615.75 618.5 391 381.75 314.75 457-456 - 456-455 - 455-454 - 454-453 6 453-452 6 452-451 6 451-450 9 450-449 9 449-448 9 448-447 12 447-446 12 446-445 12 - n/a 225.33 643.5 501.4 - 88 200.33 569 394 - 84 232 '506.25 375.5 4 106.67 236 631.5 436.5 6 119 243.33 609 488.5 8 111.5 241 630.5 515.75 4 106 236 650. 588.3 6 119 255.33 609.75 469.5 8 117 228.67 650 561.3 4 113 209 520 524.75 6 " 118.33 245.67 569.5 570.25 8 98,67 210.67 495.5 434.75 439-438 - 438-437 - 437-436 - 436-435 6 435-434 6 434-433 6 433-432 9 432-431 9 431-430 9 430-429 12 429-428 12 428-427 12 ,- 114.33 192.67 - 108.33 183,33 - 103.33 172 4 123 216.25 6 , .. ,. 131 217 8 132 201 4 140 197.33 6 139.67 209.67 8 132.33 . 228 4 129.33 185.33 6 121.67 175 8 111.33 167.67 483.25 431.25 401 520.25 554.5 524.5 651.75 557 593.25 484 494.75 462 366.4 367 366.5 491.25 499.5 484.75 465.5 516.8 500 -427.8 398.75 399.5 .) Table F-8 Elastic Moduli: Base Layer (E2) 1994-1997 Station Number 501-500 500-499 499-498 498-497 497-496 496-495 495-494 494-493 493-492 492-491 491-490 490-489 CMMSS (in.) 12 12 12 9 9 9 6 6 6 - - Cement Content (%) 8 6 4 8 6 4 8 6 4 - 1994 70.67 59 73.75 58 45.33 42 45.33 44.67 40 9.25 10.33 12 457-456 - 456-455 - 455-454 - 454-453 6 453-452 6 452-451 6 451-450 9 450-449 9 449-448 9 448-447 12 447-446 12 446-445 12 439-438 - 438-437 - 437-436 - 436-435 6 435-434 6 434-433 6 433-432 9 432-431 .9 431-430 9 430-429 12 429-428 12 428-427 12 - n/a - 19.33 - 28.33 4 50,67 6 48.5 8 38.33 4 52.67 6 56.33 8 51.33 4 . 65.33 6 67.67 8 52.67 - 10.33 - 9.67 - 17,67 4 .. 34.67 6 ... 33 8 37.33 4 38.33 6 43.33 8 55 4 56.33 6 58.33 "8 73.67 Year 1995 1996 ' 1997 72.33 72.67 67.67 54 50.33 46.33 62.33 47.67 39,33 10 11,67 13 67 73.25 72 '47.75 43 43 43 40 34.75 7.33 12 12.2 83.5 . 72.25 66.75 53.8 41.8 35.5 37,75 31,25 ~29 , 7.5 10,75 13 32.33 20.33 19.67 51.3 60 60.3 53.67 58 55.33 83.33 81.67 72 29.5 20 22,25 40.5 52,5 45 48.5 46.5 48.5 65.75 68,75 59 25.4 19 17.25 47,75 40 35,5 40.5 42 44.3 62.75 69,25 51.6875 13,67 13 12 39.25 37.25 53 55.33 55.67 59 69.67 87.33 91.33 13.75 10.25 11 34 32.5 37.5 38.75 43 41.5 56 61.75 61 . 10.4 8,75 12.75 30.25 30.75 37.25 55.3 46.5 44 55.6 59.75 65.5 H I Il , II: ) Table F-9 Elastic Moduli: Cement Modified SUbgrade(E3) 1994-1997 Station Number 501-500 500-499 499-498 498-497 497-496 496-495 495-494 494-493 493-492 492-491 491-490 490-489 CMMSS (in.) 12 12 12 9 9 9 6 6 6 - Cement Content (%) 8 6 4 8 6 4 8 6 '4 - 457-456 - - - 456-455 - - 455-454 - - 454-453 6 4 453-452 6 6 452-451 6 8 451-450 9 4 450-449 9 6 449-448 9 8 448-447 12 4 447-446 12 6 446-445 12 '8 439-438 - 438-437 - 437-436 - 436-435 6 435-434 6 434-433 6 433-432 9 432-431 9 431-430 -9 430-429 12 429-428 12 428-427 12 - - , - 4 6 8 4 6 8 4 6 8 '1994 35 38.33 36.25 30.67 24 22.33 25 24.67 22 - - .- 24.67 24 28 27.67 29.67 27.33 36 37.'67 29 --- 18 16.33 18 20.33 23 28.67 31.33 32 40.33 Year 1995 1996 40 40 37.33 28.33 26.67 24.67 30.67 23.33 19.33 - - 25.33 29.33 29.67 28.33 30.33 ' 23 46 45 39.67 - - - 19.25 18.25 26 29.33 29.67 31 38.33 48.33 50.33 37 40.25 39.5 25.5 22.75 22.75 20.75 19.5 16.75 - - - - 20 23.25 22 - 26 24.5 26 36.25 38.25 32.5 - 16.5 16 ,18.25 22 22.75 22 31 34.25 33.75 1997 32.8 35.25 32.75 28.8 21.8 19 21 17.5 ' 16.25 - - 23.5 19.75 17.25 21.8 20.8 23.3 34.75 38.25 33 - 14.75 15 18.5 29.3 24.5 23.5 30.8 33 36.25 I '~,If --~- Ii Table F-10 Elastic Moduli: Subgrade (E4) 1994-1997 Station Number 501-500 500-499 499-498 498-497 497-496 496-495 495-494 494-493 493-492 492-491 491-490 490-489 CMMSS (in.) 12 12 12 9 9 9 6 6 6 - Cement Content (%) 8 6 4 .8 6 4 8 6 4 - - 1994 24.67 22.67 19.75 16.67 15.33 15 16.67 17 14.33 3.75 5 4.67 Year 1995 1996 20.33 18.33 18.67 14.67 14.67 15 17.33 14.33 12 2.67 3.33 3.33 20.75 19.25 19.75 16.25 16.5 15.75 16.25 16 14.25 2.67 4- 4 1997 18.6 17.75 15.75 15.8 13.3 12 13.5 12.25 11.25 2.25 3 3.25 457-456 - 456-455 - 455-454 - - n/a 9 8 6.6. - 6.67 7 6.25 5.5 - 9.67 7.33 6.25 4.75 454-453 6 4 18 16 13 12.75 453-452 6 6 19 20.7 15.25 10.25 452-451 6 8 19 14.67 12.25 9.25 451-450 9 4 19 14 18.5 12.8 450-449 9 6 21 18.33 15.5 13.3 449-448 9 8 22.67 17.33 18.5 14.5 448-447 12 4 29.33 . 27.33 25.5 22.5 447-446 12 6 30 28 25 37.25 \ 446-445 12 '8 23 25.33 23 20.25 439-438 - 438-437 - 437-436 - 436-435 6 435-434 6 434-433 6 433-432 9 432-431 9 431-430 9 430-429 12 429-428 12 428-427 12 - - , 4.33 4 - 6.33 4 11 6 10 8 12.33 4 14 6 20 8 22.67 4 25 6 25 8 25.67 3.67 3.33 3.67 11 11.75 14.75 17.33 19.67 17.67 26.33 27.33 28 16 3.25 3.5 9.75 9.5 12.25 14.5 16.25 14.5 22.25 25.5 28 2.8 2.75 3.75 8 8.5 9.75 17 14.3 12.3 .20.8 24.5 22.75 I III APPENDIXG: Supporting Data on Optimal CMMSS Thickness and Cement Percentage ________0 _ 100 FigureG-1 Elastic Modulus Increase vs. CMMSS Increase I 90 ,!I 80 -- 70 ~ 0 CD 60 tn CIS ~ uc 50 tn ~ ~ "C 40 0 :E 30 20 10 0 0 1 2 3 4 5 6 7 Thickness Increase (in.) . .' ., . .-:.' , _ .-. _ _.. .. .- wa- as "iii Elastic Modulus Increase vs. Cement Percentage Increase 1 2 3 4 5 Cement Increase (%) ---I 50,000 Figure G-3 Cost Per Mile for Cement Modification 40,000 --- 30,000 ~ I/) 0 U 20,000 10,000 ......-12.. TS1 ( _9"TS1 -+-S"TS1 --M-12"TS2 _9"TS2 -+-S"TS2 ~12"TS3 -9"TS3 -S"TS3 0 4 5 - _ . _ - _ . - .._- ......_ _-_.- ----_ ---_ _ 6 7 8 __ _ _ Cement (%) _ - - - - _ ...... .. .~ _.. _------_.-..- .. ._----- ---------------------------, Figure G-4 Cost Increase vs. CMMSS Thickness Increase .. ' 120 100 80 --~ 0 Q) .tI'J tV 60 Q) ~ rC::J: ..... tI'J u0 40 20 o o 1 2 3 4 5 6 7 CMMSS Thickness Increase (in.) --------- 100 90- Cost Increase vs. Cement Percenta 80 -- 70 of!. CI) ..tcivl 60 CI) CcJ 50 til :::J :::J "C 0 40 ~ 30 20 10 0 0 1 2 3 4 5 Cement Increase (%) ------------------- -----------.-._------_._---------------------------------------------'