GEOLOGY AND GROUND-WATER RESOURCES OF TilE COASTAL AREA OF GEORGIA By JohnS. Clarke, Charles M. Hacke, and Michael F. Peck GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION GEORGIA GEOLOGIC SURVEY BULLETIN 113 ERRATA SHEET Page 49. figure 22 -38Q004 should be Lower Floridan aquifer 39Q017 should be Lower Floridan aquifer 39Q018 should be Lower Floridan aquifer Page 80-Well number 4H074 should be 34H074 Page 83-Well number 34H391, aquifer should be Lower Floridan (LF). GEOLOGY AND GROUND-WATER RESOURCES OF THE COASTAL AREA OF GEORGIA by John S. Clarke, Charles M. Hacke, and Michael F. Peck Department of Natural Resources Environmental Protection Division Georgia Geologic Survey Cover Photograph: Sunset at St Marys, Georgia. [Photograph courtesy of Dean B. Radtke, U.S. Geological Survey] GEOLOGY AND GROUND-WATER RESOURCES OF THE COASTAL AREA OF GEORGIA by JohnS. Clarke, Charles M. Hacke, and Michael F. Peck Prepared in cooperation '>l.ith the Department of the Interior U.S. Geological Survey Water Resources Division and _j Department of Natural Resources J. Leonard Ledbetter, Commissioner Environmental Protection Dhision Harold F. Reheis, Assistant Director Georgia Geologic Survey \Villiam H. McLemore, State Geologist Atlanta, Georgia 1990 Reprinted 1999 BULLETIN 113 :.:. L~ ~- - '/ ""I .:./ CONTENTS Page Abstract................................................................................................................................................................................................ 1 Introduction...........................................................................................;............................................................................................. 2 Purpose and scope............................................................................................................................................................... 2 Previous studies.................................................................................................................................................................... 3 Well-numbering system....................................................................................................................................................... 3 Method of study................................................................................................................................................................... 3 Test-well coring and drilling progtam................................................................................................................ S Borehole geophysical interpretation and correlation....................................................................................... 8 Acknowledgments................................................................................................................................................................ 8 Geology................................................................................................................................................................................................ 8 Geologic units....................................................................................................................................................................... 8 Paleocene unit....................................................................................................................................................... 9 Lower Eocene unit................................................................................................................................................ 9 Middle Eocene unit.............................................................................................................................................. 9 Upper Eocene unit..............................................................................................................................................10 Oligocene unit..................................................................................................................................................... 10 Miocene units...................................................................................................................................................... 11 Unit C.................................................................................................................................................... 11 Unit B.................................................................................................................................................... 12 UnitA.................................................................................................................................................... 12 Depositional environments ................................................................................................................. 13 Post-Miocene unit ............................................................................................................................................... 13 Pliocene Series...................................................................................................................................... 14 Pleistocene Series................................................................................................................................. 14 Holocene Series.................................................................................................................................... 14 Geophysical markers.......................................................................................................................................... 14 Configuration of geophysical-marker horizons ............................................................................................... 15 Geologic structure ............................................................................................................................................... 15 Interpretation of structural features .................................................................................................. 18 Ground-water resources............................................................................................................................................................,...... 18 Hydrologic setting.....................................................................................................................;........................................ 18 Surficial aquifer.................................................................................................................................................................. 19 Hydraulic properties........................................................................................................................................... 19 Ground-water pumpage..................................................................................................................................... 21 Water levels......................................................................................................................................................... 22 Aquifers in Miocene sediments........................................................................................................................................ 26 Upper Brunswick aquifer................................................................................................................................... 26 Lower Brunswick aquifer................................................................................................................................... 26 Hydraulic properties........................................................................................................................................... 27 Ground-water pumpage...................................................................................................................... 28 Water levels.......................................................................................................................................... 28 Floridan aquifer system..................................................................................................................................................... 29 Upper Floridan aquifer...................................................................................................................................... 29 Permeable zones .................................................................................................................................. 30 Hydraulic properties ............................................................................................................................ 30 Ground-water pumpage ...................................................................................................................... 31 Water levels.......................................................................................................................................... 31 iii CONTENTS--Continued Page Ground-water resources--Continued Floridan aquifer system--Continued . . . .. Lower ~~!~~ati~~t~~~::::~~::.::::::::.~:::::::::::::::::::::::::~::::::::::::::::::::::::::::::::::::::::::::::::::::::~:;:::::::::::::::::::::::::::::: ~: HydraUlic properties ....................,,,....................,...................................,......,.................................... 34 Ground-water purripage .........,..........................., ........................................................................... 35 Confmirig units...~.~~~~-~-~~~~~::::::::::.:::::::::~:~::::::::::::::::::::::::::::::::::::::::::::;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~; Heai:l' differences.......:..................................................................,.,......................................._............................" 38 Geothermal gradient............................................................._......................................................................,.........'":-". 41 Interaquifer leakage........................................,,.......................,,,.....,.....................................................................;;.;........ 42 Water Quality......~.......~....................................~.................................................................................................................. 43 Surficial aquifer..................................................,,..., ........,..,,..,......,.................-.................................................. 43 Aquifers in Miocene sediments......................,.,,.................,_,.............................................................................. 45 "'''Floridan aquifer system.......:.......::......:..::::.......,,,..._,.,.................,.................................................................... 46 Chloride concen~rai~on.........,;.......................,.,...,.,............................................................................. 46 Summary and conclusions.........................................................,..............,,,..,...,.,.,..................................;....................................... 53 Selected references.........:......................................................................,................., ........................................................................ 58 Appendices............................................................................................,......, ...................................,................................................ 62 Appendix A.--Lithologic descriptions from sele~ted wells ........,.................................................................................. 63 AppendiX B.--Record ofselected construction information and available geophysical logs for wells in the study area...............:......................................................................................................:...................... 69 Appendix C.-:Ground-water-level, chloride, and specifi~ C()nductance d~ta from selected wells in the coastal area...........::...: ..............'.............................._.,......,_,_....,....;:.;...._.;........................................................ 92 Plate Plates 1. 2. 3. 4. 5. 6-12. ILLUSTRATIONS [~~ates are 'in _pocket] Mapshowing the locations of test wells and other se:ler;t~d weUs in.coastal Georgia Lithologie and geophysical properties of sediments, well-co_nstruction characteristics, and head relations at nested-well sites in the coastal area. . Generalized correlation of geologic imd hydrologic units of Tertiary and Quaternary age in Georgia and adjacent parts of Florida and South C:arolina. Geologic sections A-A', B-B', C-C', D-D', and E-E', coastal Georgia. Geologic sections F-F' and G-G', coastal Georgia. Maps showing: 6. Altitude of geophysical horizon D in the coastal area, Georgia. 7. Altitude of geophysical horiZon C in the coastal area, Georgia. 8. Altitude of geophysical horizon Bin the coastal area, Georgia. 9. Altitude of geophysical horizon A in the coastal area, Georgia. 10. Thickness of Miocene unit C in the coastal area, Georgia. 11. Thickness of Miocene unit B in the coastal area, Georgia. 12. Thickness of Miocene unit A and post-Miocene unit in the coastal area, Georgia. iv ILLUSTRATIONS--Continued Page Figure Figures Figure Figures Figure 1. Map showing the location of study area and nested-well sites..................................................................4 2. Structural features in the coastal area of Georgia and adjacent parts of Florida and South Carolina ....................................................................................................... 17 3. Acoustic televiewer log at well 33H188, Colonels Island, Glynn County ............................................. 20 4. Map showing estimated water-table surface of the surficial aquifer in the coastal area..................... 23 5.-11. Hydrographs showing: 5. Daily mean water levels in the surficial aquifer at well35P094, and total monthly rainfall at National Weather Service Station Savannah WSO AP, Chatham County, 1978-87.............................................................................................................. 24 6. Daily mean water levels in the surficial and Upper Floridan aquifers, Bulloch South site, Bulloch County, 1983-87 ............................................................................... 24 7. Daily mean water levels in the surficial aquifer and the upper water-bearing zone and brackish-water zone of the Floridan aquifer system, Brunswick Pulp and Paper Company site, Glynn County, 1983-87.............................................................. 24 8. Daily mean water levels in the upper water-bearing zone of the Upper Floridan aquifer and the surficial and upper Brunswick aquifers, Coffm Park site, and total monthly rainfall at the National Weather Service station at Brunswick, 1983-87.......................................................................................................................... 25 9. Daily mean water levels in the surficial, upper Brunswick, and Upper Floridan aquifers at the Gardi site, Wayne County, 1983-87...................................................... 26 10. Daily mean water levels in the upper Brunswick and Upper and Lower Floridan aquifers, Hopeulikit site, Bulloch County, 1983-87 ...................................................... 28 11. Periodic water levels in the upper and lower Brunswick aquifers at well 32H001, and in the Upper Floridan aquifer at well33H052, Glynn County, 1939-86 ........................... 29 12. Map showing potentiometric surface of the Upper Floridan aquifer in the coastal area, May 1985........................................................................................................................................... 32 13-16. Hydrographs showing: 13. Monthly mean water levels in the Upper Floridan aquifer at well38Q002 and in the Lower Floridan aquifer at well380004, Fort Pulaski, Chatham County, 1971-87................................................................................................................................. 33 14. Monthly mean water levels in the brackish-water zone and Fernandina permeable zone of the Lower Floridan aquifer, and in the upper and lower water-bearing zones of the Upper Floridan aquifer, Glynn County, 1978-87........................... 33 15. Daily mean water levels in the lower Eocene and Paleocene units in well370186 and in the Upper Floridan aquifer in well 370185, Hutchinson Island, Chatham County, 1985-87 .............................................................. 33 16. Daily mean water levels in the Upper Floridan aquifer at well 380002, Fort Pulaski, Chatham County, 1986-87......................................................................... 33 17. Map showing estimated difference in head between the surficial aquifer and the Upper Floridan aquifer.............................................................................................................. 40 18. Boxplots of selected chemical constituents................................................................................................ 44 19. Graph showing chloride concentration in the surficial aquifer at wells 34H416 and 34H430, Glynn County, ....................................................................................................... 45 20. Map showing chloride concentrations in the Upper Floridan aquifer in the coastal area, October-November 1984 ................................................................................................... 47 v Figures 21-22. Figure 23. Figures 24-25. ILLUSTRATIONS-.;Continued Page Graphs showing: . 21. Chloride. concentration in the Upper Floridan aquifer at'weli33G001, Glynn County, 1978-87......................,.........;...........................................'.....,.,..,................................ 48 22. Chloride concentration in the Upper and Lower Floridan aquifers and the Paleocene unit in the Savannah area, 1971-87........................................................................ 49 Map showing chloride concentrations in the upper water-bearing zone of the . :> , Upper Floridan aquifer in the Brunswick area, October7November 1984 ....................................... 51 Graphs showing: . 24.' Chloride concentration in the brackish-water zone of the Lower Floridan aquifer, and in the upper and lower water-bearing zones of the UppefFloridan aquifer in the Bay Street area of Brunswick, 1971-87 ..............,................................................... 52 25. Chloride concentration in the upper and lower water-bearing zones of the Upper Floridan aquifer in the north Brunswick area, 1971-87....:....................................... 52 '.:):,,\ Table 1. z. 3. 4. TABLES Page Well information at nested-well sites in the coastal area...................................................................................... 6 Hydraulic conductivity of core samples, Savannah and Brunswick areas ...............:......................................... 36 Ground-water temperatures and gradients, Savannah area ..................,............................................................. 42 .Chemical analyses of ground water from selected wells in the coastal area ...........,............................. in pocket .. vi CONVERSION FACTORS For use of readers who prefer to use metric (International System) units, conversion factors for terms used in this report are listed below: Multiply inch-pound units To obtain metric units inch (in.) foot (ft) mile (mi) 25.4 0.3048 1.609 millimeter (mm) meter (m) kilometer (km) square mile (mi2) gallon (gal) 2.590 Volume 3.785 0.003785 square kilometer (km2) liter (L) cubic meter (m3) gallon per minute (gal/min) million gallons per day (Mgal/d) inch per year (in/yr) gallon per day (gal/d) cubic foot per day (fr'/d) gallon per acre per day (gal/acre/d) 0.06309 0.04381 43.81 25.4 3.785 0.02832 0.0009352 liter per second (L/s) cubic meterfer second (m /s) liter per second (L/s) millimeter per year (mm/yr) liter per day (L/d) cubic meter per day (m3/d) liter per square meter per day (L/m2/d) vii Multiply part per million (ppm) square foot per day crtZ/d) foot per day (ft/d) gallon per minute per foot [(gal/min)/ft] niicromho per centimeter at 2sO Celsius (pmhos/cm at 25C) degree Fahrenheit (F) CONVER.SION FACTORS..~Coritinued To obtain Concentration 1 1,000 milligram per liter (mg/L) ) I microgram per liter (pg/L) Transmissivity 0.09290 square meter per day (m2/d) Hydraulic conductivity 03048 meter per day (m/d) Specific capacity 0.2070 liter per second per meter [(L/s)/m] Specific conductance 1 microsiemens per centimeter at 25 Celsius (pS/cm at 25C) Temperatures degree Celsius (0 C) . Sea ]eve] In this report "sea level" refers to the National GeodetiC Vertical Datum of 1929 (NGVD of 1929)--a geodetic datuni derived from a general adjustment of t~e first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929. viii GEOLOGY AND GROUND-WATER RESOURCES OF THE COASTAL AREA OF GEORGIA By JohnS. Clarke, Charles M. Hacke, and Michael F. Peck ABSTRACT Ground water is the principal source of water in the 13-county coastal area of Georgia. During 1986, more than 273 million gallons per day was withdrawn from aquifers of early Eocene to post-Miocene age, primarily from the Upper Floridan aquifer of late Eocene and Oligocene age. Ground-water withdrawals since the late 1800's have resulted in long-term waterlevel declines in the Savannah and Brunswick areas, saltwater encroachment in the Hilton Head area of South Carolina, and upward movement of highly mineralized water in the Brunswick area. Geologic units in the coastal area consist of limestone, dolomite, and unconsolidated sand and clay that range in age from Late Cretaceous to Holocene. Rocks of early Eocene to Oligocene age predominantly are carbonate, whereas younger rocks are mostly clastic. Four geophysical marker horizons of late Eocene through Miocene age were mapped and eight local subsurface structural features were identified that may affect the quality of ground water in the Brunswick area. These structural features may be associated with high-angle faults that bound horsts and grabens. Ground-water pumping in the coastal area is derived from five aquifers that range in depth from 5 to 1,000 feet below land surface. From shallowest to deepest, they are: the surficial, upper Brunswick, lower Brunswick, Upper Floridan, and Lower Floridan aquifers. The upper and lower Brunswick aquifers were delineated and named during the study. With the exception of the surficial aquifer, where water generally occurs under water-table conditions, each of the aquifers contains water under confined (artesian) conditions. Locally, the surficial aquifer includes layers of clay that form confining or semiconfining zones within the aquifer. Cones of depression resulting from pumping for industrial use have developed in the potentiometric surface of the lower semiconfmed zone of the surficial aquifer at Brunswick, and in the Upper Floridan aquifer at major pumping centers in the Savannah, Jesup-Riceboro, Brunswick, and Kings BaySt Marys areas. The water-bearing properties of the aquifers are variable owing to vertical and lateral variations in lithology. The most productive aquifer is the Upper Floridan, from which well yields of 5,000 to 10,000 gallons per minute are common, and the transmissivity is as high as 500,000 feet squared per day. Wells tapping the surficial and the upper and lower Brunswick aquifers yield from about 2 to 180 gallons per minute. The transmissivity of the surficial aquifer ranges from about 14 to 6,700 feet squared per day, and the lower Brunswick aquifer ranges from about 1,370 to 4,700 feet squared per day. Estimated values of transmissivity for the upper Brunswick aquifer range from 680 to 5,700 feet squared per day. Although there is little available information, the permeability of the Lower Floridan aquifer probably decreases to the west and north of Brunswick towards the Savannah area. 1 Concentrations of dissolved constituents in water from the surficial, upper Brunswick, lower Brunswick, and Upper Floridan aquifers are within State drinkingwater standards over most of the coastal area. Water from the Lower Floridan.aquifer is saline_ and does ,not meet drinking-water standard.s over much of the study area. Chloride concentrations in.: the Upper Flql'idan aquifer are less than 40 mg/L over most of.the coastal area. In the Brunswick area, saline water from deeper zones has intruded the Upper Floridan aquifer over an area of a few square miles, and has been detected in several wells tapping the overlying aquifers. High-angle vertical fractures associated with . geologic structural features are believed to provide a pathway for the migration of saltwater from deeper zones into shallower, freshwater zones. In the Savannah area, chloride concentrations generally increase with depth, and saltwater has the potential to enter the Upper Floridan aquifer by encroachment from the sea or possibly by upward leakage from deeper zones. Nevertheless, in the Savannah area, there has been no substantial increase iii chloride concentrations durmg the past 20 years in the wells sampled. Potential downward leakage from the surficial aquifer to the Upper Floridan is greatest in Bulloch County, where the confming units between the surficial and upper Brunswick aquifers are thinnest, an.d :Wher6 the .downward hydraulic gradient between. .the smficiai and the Upper Floridan aquifers is greatest. A significant potential for leakage also exists in' .other upland areas along the western part of the study area, and near the pumping centers at Savannah and Brunswick, where there is a large downward hydraulic gradient. Previous studies indicated that anomalously high ground-water temperatures occurred in the Brunswick area, which was attributed to upward leakage of water from deeper zones. During this study, geothermal gradients measured at six wells in Chatham County and one well in Bryan County indicate that in wells less than 700 feet deep, the gradient was lower than normal, suggesting downward flow from overlying aquifers. In wells greater than 700 feet deep, the geothermal gradient was greater than normal, possibly indicating some upward flow. Although there appears to be an upward component of flow, the quantities probably are small resulting from the low permeability of the intervening confining units. INTRODUCTION The ground-water resources of coastal Georgia are extremely important to the economy of the State of G~orgia, as well as the adjoining States of South Carolina and Florida. Nearly all municipal and industrial water users in coastal Georgia obtain their water supplies from wells that tap the Upper Floridan aquifer (formerly called the principal artesian aquifer), which is one of the most productive aquifers in the United States. . .). During 1986, llior.e th~ 273 Mgal/d of ground 'water was withdra~- (primarily from the Upper Floridan aquifer) in the 13-county coastal area of Georgia (fig. 1). This pumping has lowered ground" water levels, and has produced large cones of depression in the Upper Floridan aquifer in the Savannah, Brunswick, Jesup, and St Marys, Ga.Fernandina Beach, Fla., areas. Water-level declines in these areas have caused concern <)ver protection 'of the ground-water resource. Potential problems associated with the water-level declines include encroachinent -of ocean water in the Savannah area, and upwatd movement of highly mineralized. carinate water inc,the Bru~swick ar.ea.. Chloride concentrations in. the Upper Floridan aquifer at two locations in the Brunswick area, e;xceed 2,000 mg/L, which is above the State 'and federal drinking water standard of 250 mg/L (Georgia: Department of Natural Resources, 1977; U;S. Environmental Protection Agency, 1986). The 13-county study area covers about 10,000 mi2 Within the Coastal Plain physiographic province (fig;l)~ The study area is bounded to the northeast by the Savannah River, to the south by the St Marys River,' and to the southeast by the Atlantic Ocean. Although not part of the study area, data and information from adjacent areas in Florida and South Carolina also were used in this investigation. Purpose and Scope Ground-water is heavily pumped in parts ;of Georgia's coastal area. A thorough understanding of the hydrogeology of the area is necessary to properly manage the resource. In response to this need, the. U.S. Geological Survey, in .cooperation with the Georgia Department of Natural Resources, Environmental Protection Division, Georgia Geologic Survey, started a detailed hydrologic and water-quality evaluation of.the 2 ground-water-flow system in coastal Georgia in 1982. In addition, the surficial aquifer and the aquifers in Miocene sediments were evaluated as potential alternative sources of water. Information from the investigation will be used by the Georgia Department of Natural Resources to better defme the freshwater-flow system; to assess the occurrence, movement, and quality of water underlying and locally infiltrating the freshwater-flow system; and to evaluate the effects of geologic structure on the entire flow system in coastal Georgia. With this understanding, the Environmental Protection Division can manage the resource so that contamination of the freshwater part of the aquifers can be minimized, negated, or perhaps even reversed. Portions of this study were funded as part of the Georgia Accelerated Ground-Water Program. This report is the second in a series that describes fmdings of the coastal area study. The first report presented data and information available as of July 1983 (Krause and others, 1984), and primarily focused on the Upper Floridan aquifer. For a complete discussion of aquifer terminology for the Floridan aquifer system in the study area, the reader is referred to Miller (1986) and to Krause and Randolph (1989). This report describes the geohydrologic framework and water quality of the surficial aquifer and aquifers in the Miocene sediments, and updates earlier data and information for the Upper Floridan aquifer. In addition, the report describes the affects of geologic structure on the ground-water-flow system in the Brunswick area and the potential for leakage between aquifers throughout the coastal area. The fmal phase of the study will use all existing data and information to develop a computer-based mathematical model that will simulate the ground-water-flow system in the study area. The model will be used to assess the potential for additional ground-water development in the study area. Previous Studies An extensive list of investigations on the geology and hydrology of the study area was compiled by Krause and others (1984). Krause and Randolph (1989) updated the list and included additional references to investigations that were not within the scope of the earlier report; mainly references to geologic structure and to the geohydrology of aquifer systems other than the Upper Floridan aquifer. Recent reports about the geology of the coastal area include those by Woolsey (1977) and Huddlestun (1988). These reports delineate and describe the Neogene stratigraphy of the Georgia coast and the inner continental shelf. Recent reports about the hydrogeology of the area include work by Miller (1986), which describes the hydrogeologic framework and updates the stratigraphy of the Floridan aquifer system and overlying sediments. Miller's (1986) investigation included the entire Floridan aquifer system in all of Florida, the Coastal Plain of Georgia, and adjacent parts of Alabama and South Carolina. Thus, it was of regional extent and of general detail and scope. Krause and Randolph (1989) described the hydrogeologic framework, hydraulic characteristics, water quality, and ground-water development of the Floridan aquifer system in southeast Georgia and adjacent parts of Florida and South Carolina. Krause and Randolph (1989), being more local in extent and scope, provided greater detail about the hydrogeologic framework of the Floridan aquifer system in coastal Georgia. Soil and Material Engineers, Inc. (1986a), reported on the ground-water resources in Miocene deposits at Colonels Island and on the ground-water resources in Pliocene to Holocene deposits at Skidaway Island (1986b). Davis and others (1963, 1976) reported on land subsidence in the Savannah area between the 1930's and the 1970's. Well-Numbering System Wells discussed in this report are numbered according to a system based on the U.S. Geological Survey index to topographic maps of Georgia (pl. 1). Each 7 1/2-minute topographic quadrangle in the State has been given a number and a letter designation beginning at the southwest comer of the State. Numbers increase eastward and letters increase alphabetically northward. Quadrangles in the northern part of the State are designated by double letters. The letters "I," "0," "II," and "00" are omitted. Wells inventoried in each quadrangle are numbered consecutively beginning with 1. Thus, the fourth well inventoried in the 34H quadrangle in Glynn County is designated 34H004. Method of Study Borehole geophysical logs, lithologic logs, or both, are available for more than 500 wells in the study area. Cores and drill cuttings from five wells were examined 3 331 EXPLANATION NESTED-WELL SITE GAIIDI ' . -' . ~..; \ . 31 'c I CHARLTON 'L_____l 0 10 20 30 40 50 MILES 0 10 20 30 40 50 KILOMETERS I' \ ,_( .' t ; \ ' Figure 1.-~l:ocation of study area and nested-well sites. 4 microscopically to determine both their mineralogical and paleontological content. These sample descriptions were matched with patterns on geophysical logs obtained from each of the five wells. The log patterns were then used to correlate geologic strata throughout the study area. Lithologic logs from two cored holes are presented in appendix A at the back of this report. All the above data, supplemented by data from Herrick (1961) and Miller (1986), provided a basis for the delineation of geologic units, aquifers and confining units, and for the construction of geologic sections and maps that show the altitude of the tops of four geophysical marker horizons. In addition, three maps that show the approximate thickness of four of the geologic units were constructed by using data from geophysical and lithologic logs, and by comparing maps that show the altitude of the top of each unit with the altitude of the top of the underlying unit. Selected core samples were analyzed to determine their chemical and radioactive composition. The water-bearing properties of the Upper Floridan aquifer at Brunswick were determined from time-drawdown and time-recovery data collected during an aquifer test. Additional information of the waterbearing properties of the aquifers was obtained from published and unpublished data. An estimate of the transmissivity of the surficial aquifer was made by using a flow-net analysis. Maps showing the potentiometric surface of the Upper Floridan aquifer and the water-table surface of the surficial aquifer were constructed based on waterlevel measurements made in more than 400 wells. Continuous water-level recorders were installed on 21 wells to assess water-level fluctuations and trends in the aquifers. A list of selected well construction information and geophysical logs used in this study is given in appendix B at the back of this report, and the locations of these wells are shown on plate 1. Water samples were collected from 15 wells and analyzed for selected constituents. These data, together with published and unpublished data from 163 additional wells, were used to determine the median, the 25th and the 75th percentiles, and the maximum and minimum concentrations of selected constituents. In November 1984, water samples from 171 wells were collected for analysis of chloride and for specificconductance determinations. From these data, a map showing the chloride concentration of water from the Upper Floridan aquifer was prepared. Graphs showing the chloride concentrations in selected wells were plotted to assess water-quality trends. An assessment of the potential for interaquifer leakage was based on the thicknesses and hydraulic properties of the confining units, head differences between adjacent aquifers, water-level fluctuations and trends, and differences from the normal geothermal gradient. Areas of probable leakage were identified by observing water-quality changes in wells. Test Well Coring and Drilling Program As part of this study, 23 test/monitoring wells were constructed or modified during 19 82 to 1986 to gain additional geologic, hydrologic, geophysical, and water-quality data in parts of the study area (fig. 1, table 1). In addition, two monitoring wells (33E039 and 33E040) were drilled for the U.S. Navy at the Naval Submarine Base at Kings Bay, Camden County, as part of a ground-water withdrawal permit-application process. Twenty-three of the 25 wells comprise nine nested-well sites: two sites near Brunswick in Glynn County and one site each at Gardi in Wayne County; Hutchinson Island, Skidaway Island, and Fort Pulaski in Chatham County; Hopeulikit in northern Bulloch County; and Denmark in southern Bulloch County. Drill cuttings, cores, paleontologic samples, and geophysical logs were collected at selected test wells, and were used to correlate geologic units, aquifers, and confining units. Two abandoned oil-test wells in Glynn County (33H192 and 33G001), were modified to isolate specific water-bearing zones within the Floridan aquifer system to provide ground-water-level and groundwater-quality information. Each of the 25 test/monitoring wells was constructed or modified to provide openings to either the Upper or the Lower Floridan aquifer, one of two aquifers in Miocene deposits, or the surficial aquifer. After completion of each well, water samples were collected for chemical analysis and water-level recorders were installed. These 25 wells are now part of the Georgia ground-water-level and ground-waterquality monitoring networks. The lithologic and the geophysical properties of sediments, well-construction characteristics, and vertical head relations at the nested-well sites are shown in plate 2. 5 Table 1.--Well information at nested-well.sites in .the coastal area.. ''. '.':' ~ . [Aquifer: S, surficial; UB, tipper Brunswick; LB, lower Brunswick; UF, Upper Floridan; LF, Lower Floridan. Water level: +:above land surface; -, below land surface. Available geophysical logs: E, electric; L N., C, caliper; ~eutr9~ PQ~osity; J, natural gamma; U, gamma-gamma; S, acoustic velocity; M, focu.sed i~sistiVitY; T, Temperature; X, core; Z, other; G, geologist or sample; , F,Huid resistivity;--, data not available] m, Well no. Open interval (ft) .Aquifer,' Water level (ft) Date measured Hopeulikit site. Bulloch County--altitude of land surface is 205 ft 31U009 31U008 160-210 315-860 VB UF,LF -73.4' -78.3 05-16-85 05-16-85 Builoch south site. Bulloch County--altitude of land surface is 120 ft 32R003 134-155 s -U.4 05-16-85 32R002 420-804 UF -88.3 05~16-85 Kings Bay site. Camden County--altitude of land surface is 24 ft , 33E040 560-750 UF +8.3 06-12-87 33E039 950-1,150 UF + 13.2 06~12-87 Hutchinson Island site. Chatham County--altitude of land surface is 6 ft 370185 274-360 UF 370186 1,380-1,520 11 -1253 -77.8 05-15-86 05-15-86 Skidaway Island site. Chatham County--altitude of land surface is 10 ft 37P116 37P115 37P114 37P117 37P113 71-85 211-250 262-400 112-270 700-1,100 s UF UP UB,LB,UF LF -9.0 -50.8 -52.3 -52.2 -51.5 04-30-87 04-30-87 04-30-87 04-30-87 04-30-87 Available geophysical logs and drilling information C,E,J,U.,N,G " .. (McFadden and others, 1986) C,E,J;U~N,G E,J C,E,J,U,N,S,M, X (0-330 ft), G (4201,520 ft) C,E,J,U,N,F r"~7 6 Table 1.--Well information at nested-well sites in the coastal area-"Continued [Aquifer: S, surficial; UB, upper Brunswick; LB, lower Brunswick; UF, Upper Floridan; LF, Lower Floridan. Water level: +, above land surface; -, below land surface. Available geophysical logs: E, electric; C, caliper; N, neutron porosity; J, natural gamma; U, gamma-gamma; S, acoustic velocity; M, focused resistivity; T, Temperature; X, core; Z, other; G, geologist or sample; F, fluid resistivity; --, data not available] Well no. Open interval (ft) Aquifer Water level (ft) Date measured Available geophysical logs and drilling information Fort Pulaski site. Chatham County--altitude of land surface is 8 ft 380002 110-348 380004 606-657 380196 870-900 380201 1,358-1,546 LB,UF LF LF 11 -34.7 -34.3 -39.6 -49.9 05-14-86 05-14-86 05-14-86 05-14-86 Brunswick Pulp and Paper Co. site. Glvnn County--altitude of land surface is 7 ft 33II208 135-155 s 33II207 620-720 UF 33II206 1,000-1,100 LF -5.0 05-17-85 +6.0 05-17-85 -1.8 05-17-85 Coffin Park site. Glvnn County--altitude of land surface is 7 ft 34II438 192-202 s -5.8 34II437 313-328 UB -1.0 34II445 580-824 UF +2.0 34II436 1,000-1,103 LF +6.9 Gardi site. Wayne County--altitude of land surface is 74ft 04-02-87 04-02-87 04-02-87 04-02-87 32L017 200-215 s 32L016 320-340 UB 32L015 545-750 UF -40.0 -51.3 -55.3 05-13-85 05-13-85 05-13-85 C,E,F,G,J,N,T, u,z C (0-584 ft),E,G c (590-990 ft}, J,N,U C,E (580-827 ft) E (10-530 ft),J,U,N C,SP,G llwell taps low-permeability units underlying the Lower Floridan aquifer. 7 Borehole Geophysical Interpretation and Correlation Natural gamma-radiation logs provided the main basis for correlation of strata in the study area, and in adjacent parts of Florida and South Carolina. Most wells in the area were cased through much of the strata of interest, thus limiting the types of geophysical data that could be collected. However, because natural gamma rays can penetrate well casing, natural gamma logs were ideal for: the correlation of lithologic units from land surface to total well depth. Selected cores were examined to (1) evaluate the interpretations of natural gamma logs for correlation of units throughout the area, (2) validate the reliability of interpretations of the geophysical logs, and (3) confliili suspected fades changes within the various units. Cores were examined from the following wells: 370186 31K002 33H188 34E001 39P002 Georgia Geologic Survey Hutchinson Island test well 2, Georgia Geologic Survey test well2, U.S. Geological Survey test well 26, Georgia Geologic Survey Cumberland Island test well 1, South Georgia Mineral Program Program corehole CH-10/10A Chatham COunty; Wayne County; Glynn County; Camden Coun~'' and Chatham County. Lithologic .logs of core from wells 370186 and 34E001 are listed in appendix A. Acknowledgments The authors extend their appreciation to the many well owners, drillers, and managers Of municipal and industrial waterworks who readily furnished information about wells. In particular, the writers wish to thank Johnathan Smith of Brunswick Pulp and Paper Company, and the late Woodrow Sapp of Sapp Well Drillers, Brunswick, Ga., for providing helpful information on wells in the area. Appreciation also is extended to those landowners who permitted the installation and monitoring of test wells on their property. GEOLOGY Coastal Plain stra:ta in 'i:he study area consist of unconsolidated to semiconsolidated layers of sand and clay, and semiconsolidated . to very dense, layers of limestone and dolomite. These sediments range in age from Late Cretaceous to Holocene. Coastal Plain strata crop out in discontinous bands that generally are parallel to the F~ Line shown on figure 1. In the study area, the strata generally strike southwest-northeast, and dip and gradually thicken to the southeast, wl:t~re they reach a maximum thickness of more than 5,500 ft in Camden County .(Wait and Davis, 1986). Thes6 sedimentary rocks unconformably overlie igneous intrusive rocks and low-grade metamorphic rocks of Paleozoic age, and sedimentary strata .and volcapics . of Triassic to Early Jfirassic age (Chowns and Williams, 1983). Geologic Units To avoid confusion and cumbersome terminol~gy in this report, formations of Paleocene to Holocene age that are present in the study area, and that have similar lithologies and equivalent stratigraphic- positio11s,: 1(?r both, are grouped into ~informal time-rock units that may 'iriclude all or parts of several. formations (pL ,~); . This .report focuses mainly on units of late Eocene m .through Miocene age. Descriptions of other units ~e.r:e derived 'from published reports. Geologic units tlie study area include, in ascending order: the PaleQ(:e11e. unit, .the lower Eocene unit, the middle Eocene unit, the tipper Eocene unit, the Oligocene unit, the Mio~ene units C, B, and A, and the post-Miocene unit,, j~~: vertical relations .of these units in the study area' a~e shown on a series of hydrogeologic sections on plates 4 and5. Stratigraphic nmrienclature and age assignm~~ts used in this study conform to those used by Miller (1986) in order that this report be consistent with previous reports prepared by the U.S. Geological Survey. Det(liled stratigraphic studies conducted b'ytffe Georgia Geologic Survey have resulted in revised correlations and age assignments of some Coastal Plain stratigraphic units (Huddlestun, 1981, 1988; Huddleston and Hetrick, 1985). A simplified version of the Georgia Geologic Survey stratigraphy for the study area is included on plate 3. Because this study will serve as a basis for a digital ground-water flow model that is 8 based on Miller's geologic framework, it was deemed more appropriate to follow Miller's nomenclature rather than Huddlestun's. Paleocene Unit Data for sediments of Paleocene age in the study area are sparse. Therefore, the authors have relied heavily on the work of Herrick (1961), Herrick and Vorhis (1963), B.W. McNeely (Shell Oil Company, New Orleans, written commun., 1976), and Miller (1986) for information concerning descriptions and stratigraphic markers for this unit. Interpretations of the position of this unit in the stratigraphic column at the Hutchinson Island and Fort Pulaski nested-well sites shown in plate 2 were based largely upon their work. Sediments of Paleocene age consist of two facies in the study area, a northern clastic facies, and a southern carbonate-evaporite facies. The northern clastic facies was called the Clayton Formation by Herrick and Vorhis (1963, p. 36), Miller (1986, p. B19), and McNeely (written commun., 1976). The southern carbonate-evaporite facies was assigned to the Cedar Keys Limestone by Herrick and Vorhis (1963, p. 36), and was renamed the Cedar Keys Formation by Miller (1986, p. B18-B19). The top of the Clayton Formation generally is marked by a hard, sandy, glauconitic, fossiliferous limestone. The remaining part of the Clayton Formation consists of glauconitic sand, -----;' argillaceous sand, and small amounts of medium- to I dark-gray clay. According to Miller (1986, p. B19), this part of the Clayton Formation grades upward into the Black Mingo Formation of South Carolina, which consists of dark, carbonaceous clay and thin beds of sand. The Cedar Keys Formation consists of thick beds of anhydrite and dolomite. The Paleocene unit unconformably overlies marl and carbonate sediments of Late Cretaceous age. According to Herrick and Vorhis (1963, fig. 13), the Paleocene unit attains a maximum thickness of at least 425 ft in the study area. At the Hutchinson Island and Fort Pulaski sites near Savannah (pl. 2), the upper and the lower boundaries of the Formation are based on paleontological descriptions of McNeely (written commun., 1976), for well 360318 located about 4.6 mi west of Hutchinson Island. The depositional environments of the Paleocene unit we~e marine to marginal marine (Miller, 1986, p. B21-22). Paleocene time marked the beginning of a regional transgression of the sea that lasted through the late Eocene. Clastic sediments of the Clayton Formation were deposited in a shallow marine environment, whereas the Cedar Keys Formation represents a shallow water, carbonate platform environment. The evaporite and dolomite of the Cedar Keys Formation represent an even shallower environment, such as those found in tidal flats (Miller, 1986, p. B18). Lower Eocene Unit Sediments of early Eocene age consist of glauconitic limestone and dolomite that Miller (1986, p. B22-B23) included in the Oldsmar Formation. In the northern part of the study area, the upper part of the lower Eocene unit includes a layer of sand. Carbonate sediments of the Oldsmar Formation unconformably overlie clastic sediments of the Paleocene Clayton Formation in the northern part of the area. In the southern part of the area, the lower Eocene unit overlies anhydrites and dolomites of the Paleocene-age Cedar Keys Formation (Miller, 1986, p. B22-B23). Miller (1986, pl. 5) reported that sediments of early Eocene age attain a maximum thickness of about 800 ft in southeastern Camden County. The lower Eocene unit was found at three nested-well sites drilled in the Savannah area during this study, and ranged in thickness from 120 ft at the Hutchinson Island site to 180ft at the Fort Pulaski site (pl. 2). In this area, the lower Eocene unit consists of glauconitic limestone and dolomite of the Oldsmar Formation. The lower Eocene limestone in the southern part of the study area was deposited in warm, shallow, open marine waters of a carbonate bank environment (Miller, 1986, p. B24). The increase in clastic sediments within the unit suggests a more nearshore environment to the north. Middle Eocene Unit The middle Eocene unit consists mainly of glauconitic dolomite and limestone of the Avon Park Formation (Miller, 1986, p. B25), which unconformably overlies the lower Eocene Oldsmar Formation. The base of the middle Eocene unit is difficult to distinguish 9 from the underlying lower. Eocene unit because the two units are lithologically similar. The primary method for distinguishing the middle Eocene unit is fossil evidence. Microfossils are abundant in the middle Eocene unit, and are listed by f!errick (1961), Herrick and Vorhis (1963, table 6), an.d Miller (1986, table 1). Themost useful and the most easily recognized microfossil' Jor age determination is the foraminifera, Lepidocyclina antillea Cushman. This guide fossil is the Polylepidina of Herrick (1961) and is synonymous with L. gardnerae Cole of Miller (1986, p, B9). The upper boundary of the middle Eocene unit is more easily distinguished from overlying sediments where it is dolomitized. The middle Eocene unit attains a maximum thickness of slightlymore than 1,000 ft in western Glynn and Mcintosh Counties, and in. southeastern Wayne County (Miller, 1986, pl. 7). The middle Eocene unit was found at the Coffin Park, Brunswick Pulp and Paper Company, Kings Bay, Skidaway Island, Fort Pulaski, and Bulloch South nested-well sites (pl. 2), and the entire thickness was penetrated at the Hutchinson Island and Fort Pulaski sites in the Savannah area (pl. 2). Here, the middle Eocene unit attained a thickness of 700 and 540 ft, respectively; The depositional environment of the Avon Park Formation was a shallow, carbonate pla.tform 2overed by warm, open marine water (Miller 1986, p. B28). According to Mille:r. (1986, p. B28), some of the dolomite is indicative of a .sabkha or tidal~flat environm~nt. . Upper Eocene Unit The upper Eocene unit in most of the study area consists of the Ocala Limestone. The Ocala is a massive;. fossiliferous limestone that contains bryzoan remains, foraminiferal tests, and mollusk sheik Sinall amounts of glauconite are present in the lower part of the limestone. In northern Screven and Bulloch Counties, the unit is characterized by an increase in clastic sediments. North of the study area, the upper Eocene unit consists of the largely clastic Barnwell Formation. The upper Eocene unit unconformably overlies dolomite and limestone of the middle Eocene Avon Park Formation (Miller, 1986, p. B25). The fossils in the Ocala Limestone have been identified and listed in reports by Herrick (196i), Herrick and Vorhis (1963), :and Miller (1986, table 1). The most distinctive and useful of these microfossils for age de'terrilination and stratigraphic placeme~t is. the foraminifera, Asterocyclina nassauensis Cole. The ihost useful of the larger fossils is the mollusk, Amusium ocalanwn Dall. Glauconite in the lower part of the Ocala Limestone also is a useful stratigraphic marker _l;>eca11se it produces a relatively high peak of radiation pn natural gamma logs owing to .the presenc:e of potassium-40 in the glauconite. This glauconiticz611e' is recognized on point-resistance logs as a zone of relatively low. electrical resistance. The glauconitic :Pair of of the Ocala is persistent throughout the study arf?a, and may be equivalent to the lower division '.the Ocala of Herrick and Vorhts (1963, p.19). _,, .... f. 1 1 . is The upper Eocene unit is more than 200 ft,thick throughout the study area, and in some places it mor:e, than 400 ft thick. The exact thickness of the upp~r Eocene unit is not known at most places because the majority of wells do not penetrate the base of the uni~. The depositional environment of the upp~r' Eocene unit in ,the study area was a warm, shail<;>V:. water, carbon.ate bank similar to that of the underlying . a carbonate sediments. To the north and th'e .west; this unit grades into 'more . clastic, near-shore fac.i~ consi&ting of sand and c~ay. ' "j Oligocene Unit Sediments of the Oligocene unit consist of buffcolored, porous limestone that contains foraminiferal tests (mainly miliolids), micrite, and nonparticulate, . ubiquitous phosphate (see lithologic description~,: appendix A). The guide fossil for the Oligocene in ~he, study area is the foraminifera, Pararotalia mexicqn9:E mecatepeceilsis Nuttcil!, formerly Rota!ia ,mexicana, , (Sever, 1966). The unit unconformably overlies the. upper Eocene Ocala Limestone (pl. 3). The Oligocene unit is distinguished from . the'. underlying bryzoan-rich, upper Eocene Ocala Limestone by an abundance. of miliolid foraminifera, and from the overlying Miocene carbonate sedim~;nts by the absence of particulate phosphate. The difference in phosphate content between the Oligocene limestone and the overlying Miocene carbonate sediments appears as a sharp decrease in gamma activity on the natural gamma log. However, Wait and Gregg (1973, 10 p. 5) reported the presence of particulate phosphate in Oligocene limestone in the Brunswick area. In the Savannah area, an infilling of particulate phosphate was observed in a feature that probably was either a burrow or a root hole that penetrated the top 15 ft of the Oligocene limestone in a core from well 370186 (pl. 2, appendix A). The infilled material, however, was considered Miocene in age because it was lithologically the same as the overlying phosphatic dolomite of Miocene age. Because the observations made by Wait and Gregg (1973) probably were based on well cuttings, it is possible that the reported presence of particulate phosphate was due to a similar infilling. The lithology, thickness, and stratigraphic position of the Oligocene unit correlates well with the stratigraphic framework established in previous studies; however, Miller (1986, pl. 10) did not recognize the presence of Oligocene limestone on Cumberland Island. During this investigation, however, it was determined that Oligocene limestone was present in well 34E001 on Cumberland Island based on the response of the natural gamma log of the well and the presence of miliolid foraminifera in the core interval 532 to 534 ft (appendix A). The Oligocene unit reaches a maximum thickness of about 120 ft at well 341047 at Darien, Mcintosh County (section F-F', pl. 5). The unit is absent in western and southern Camden County, and locally in southern Wayne County (pl. 7). In places where the Oligocene unit is absent, the altitude of the top of the upper Eocene unit (pl. 6) is the same as the altitude of the base of the Miocene unit (pl. 7). The Oligocene unit generally increases in thickness from west to east (pl. 4) and from south to north (pl. 5). The limestone of the Oligocene unit was deposited in a carbonate bank environment. In updip areas, the unit is characterized by an increase in clastic sediments, which is indicative of a marginal marine environment. Miocene Units Sediments of Miocene age consist of three similar depositional sequences that are each bounded above and below by an unconformity. Each sequence comprises a geologic unit that consists of a basal carbonate layer, a middle clay layer, and an upper sand layer. Because the lithology of each of the units is similar, they can only be differentiated from one another by stratigraphic position, by limited paleontologic evidence, and by geophysical characteristics. The units were named after three geophysical markers (see the section, Geophysical Markers) and are, in ascending order, Miocene units C, B, and A (pl. 3). The base of each unit is defined by the geophysical marker of the same designation, thus, the base of unit C is recognized by the C marker, and so forth. The lithology, thickness, and stratigraphic position of the three units best fit the stratigraphic framework of McCollum and Herrick (1964); units C, B, and A correlate with the lower, middle, and upper Miocene divisions, respectively. Reports by Woolsey (1977) and Huddlestun (1988) give ages for the three units as early Miocene, late early Miocene, and middle Miocene, respectively. Miller (1986, B35-B38) regarded the Miocene in Georgia as mostly middle Miocene in age, but recognized that strata of late Miocene and early Miocene age possibly were present. Because the exact ages of the units are unresolved, all Miocene strata are considered as middle Miocene in this report (pl. 3). At the nested-well sites, the total thickness of Miocene sediments ranged from about 65 ft at the Fort Pulaski site near Savannah, to more than 335 ft at the Brunswick sites (pl. 2). The Miocene sediments unconformably overlielimestone of Oligocene age in most of the study area. However, in some areas where Oligocene limestone is absent, Miocene sediments unconformably overlie the Ocala Limestone of late Eocene age (pl. 2). (See map showing altitude of the base of the Miocene, pl. 7.) In most of the study area the basal carbonate layer of unit C consists of sandy, phosphatic dolomite or limestone that contains the molds of mollusks. The basal carbonate layer grades upward into the middle clay layer, which consists of alternating laminae of silty clay and clayey silt. These laminae contain fish remains; circular molds of diatoms similar to Coscinodiscus sp.; silt consisting of dolomite rhombs and angular quartz; very fine, well rounded, shiny brown to black, phosphatic sapd; and very fine mica. The middle clay layer grades upward into the upper sand layer, which consists of poorly sorted, very fine to granule-size quartz sand and some phosphate grains and dolomite rhombs. Interpretations of geophysical 11 logs at the nested-well sites in the Savannah area (pl. 2), . indicate that the middle day layer and upper sahd;layer are absent, probably owing to erosion. Only the lower part of the basal carbonate layer is present, and it consists of sandy, phosphatic;;)imestone that contains mollusk shells, foraminiferal tests, and shark's teeth. Unit C ranges in thickness from about 10 ft at the Hutchinson Island site and 3 ft at the Fort Pulaski site near Savannah, where only the lower part of the basal carbonate layer is present (p~. 2), to more than;1_60.ft in northeastern and southeastern Glynn County and in southeastern Mcintosh County (pl. 10). The.: entire sequence of unit C is preserved in the Brunswick area at the Coffm Park and the Brunswick Pulp and Paper Company nested-well sites, where the unit ranges in thickness from 120 to 130 ft (pl. 2). Northeast from Brunswick and parallel to the coast, the three lithologic layers thin, and in the Savannah area, all but the lower part of the basal carbonate layer are absent.. The lithology, thickness, and stratigraphic position of unit C ...c.orre~a~ with the lower Miocene of McCollum and Herrick (1964). The basal carbonate layer of unit C also ~orrelates with the the Tampa Limestone of Counts and Donsky (1963, tabl.e. 1; p; 28.. 29.), with the Parachucla Formation of Wqol.s.ey (1977) . and Huddlestun (1988) in the Savannah area, and with the Edisto Formation of Ward (DuBar and others, 1980) in South Carolina. Unit C correlates . with .the lower section of the lower and the middle Miocene of Wait (1965) and Wait and Gregg (1973, fig, 2; p. 3-4). Unit B, like unit C, consists of a basal carbonate layer, a middle clay layer, and an upper sand layer. The lithology of each of these layers i.s .similar to those in unit C. The basal carbonate layer .consists of dolomite and limestone that contain very fme to coarse clear quartz sand, shiny brown to black phosphatic sand, and molds of mollusk shells. In the Savannah area, .the basal carbonate layer consists of limestone that contains both quartz and phosphatic sand, mollusk shells, foraminiferal tests, and shark's teeth (see core description, well 370186, appendix A). The basal carbonate layer grades upward into a middle clay layer that consists of. alternating laminae of phosphatic silty clay and clayey silt. These laminae contain silt-~ize quart? grains, dolomite rhombs, phosphate grains, mica, (lnd fish teeth and scales. Circular. molds of . diatoms, similar to those found in the middle day layer of. of unit C, also are present. The middle clay layerjs overlain by an upper sand layer that consists riio~tly poorly sorted, very fme to coarse quartz sand.. No, fossils were found in this layer, and the uppermost part . contains little phosphate, carbonate, or clay. 'Hg.\v~yer, very thih dolomite layers are present in the tippeiiiicist part of the sand layer. ..t; at tJnit B ranges in thickness from about 30 ft the Fort Pulaski site in Chatham County (pl. 2) to Jl~~4t 220 ft in .northeastern Brantley and south-ceritrru Wayne Counties (pl. 11). The greatest thickness of'the :- unit is found in a structural low located northwest of Brunswick (pis. 8 and 11). The total thickness ,.<.j 10 Ill: Ill <1- ~ 15 14 Ill I:l:l (.) ~ io ~ i 8 Q u~1<- 6 4 Ill Ill: 2 A. Blank w~ere dta milling Figure 5.--Daily mean water levels in the surficial aquifer at well35P094, and total monthly rainfall at National Weather Service Station, Savannah WSO AP Chatham County, 1978-87. 5r-------r------.r-----_,~-----.~-----, lll.l ll.l -l ffi 90 =: 32R002 ~ Upper Floridan aquifer (420804 ft) of d~prel!sion are believed to exist around other areas of pumping, such as that for industrial use in Wayne County. Water-level fluctuations in the surficial aquifer in the BrunsWick area are shown by the hydrographs fokwell 33H208 at the BrutisWick Pulp and Paper Company site (fig. 7) and well 34H438 at .the GoffiJ!. Park site (fig. 8). Both wells are influenced by nearby pumping from the surficial aquifer and by rainfall. In addition, although not discernible on the 1ong.:term hydrographs, the water level also responds to .tidal fluctuations,. Several sharp water-leve.l rises on the hydrographs correspond to reductions in industrial pumping from the Upper Floridan aquifer, which may indicate some connection between the aquifers. Ill (.) < 5 "'Ill: :;) Ill ..z1:1 10 < ':! 15 g.~ '20 =Ill ,/ 15 ir: , _0 .;!;. 10 Ill > = 0 < 5 1Ill Ill ~"' 0 ,.j I>ll . . 5 Ill ,..j =Ill 10 ~ ~ 15 33H208 Surficial aquifer (135155 ft) Blank where data missing J Upper water..bearJng zone of the Upper Floridan aquifer (620720 ft) Blank where data missing 1983 1984 1985 1986 CALENDAR YEAR 1987 Figure 7.--Daily mean water levels in the surficial aquifer and the upper water-bearing zone and brackish-water zone of the Floridan aquifer system, Brunswick Pulp and Paper Company site, Glynn County, 1983-1987. 95L-----~~----~-------J----~~------~ 1983 1984 1985 1986 1987 CALENDAR YEAR Figure 6.--Daily mean water levels in the surficial and Upper Floridan aquifers, Bulloch South site, Bulloch County, 198387. 24 Or---------,----------.--------~--------~----------, Blank where data missing -5 --.- :: -15 0 -l l.l.l CQ cz:: -20 0 :l.:l>.l -25 0 CQ l.l.l -l cz:: -5 ~ 34H438 'cmt 300ft (well 32L016), and is separated from the silitltial aquifer by a dense carbonate and clay con.finiiiig''ihiit that is about 28 ft thick. Since 1983, the water-level trend in the upper Brunswick aquifer has beeri 'slightly .Clownward at the Gardi site, and similar tq tha:ffil:'the underlyip.g Upper Floridan aquifer (fig. 9). ~::~I' ; " In areas where the upper and the lower Bruns~:& aquifers are not as deeply buried and are distant frelin. ,pumping centers of the Upper Floridan aquifer';'~~ter levels primarily respond to seasonal climatic cha~ges,, although regional pumping 'probably has,, ' sq~y at influence. The upper .Brunswick aquifer. in, '~'iigcich County is about 95 ft below land surface . the Hopeulikit site (pl. 2), and is near the area where the Miocene units crop out at 'land surface. The hydrograph for well :31U009 (fig. 10) indicates that seasonal water-level fluctuations in the ~ppel," BrunsWick aquifer are similar to those in the Uppe~ Floridan. The seasonal water-level decline in thesprpjg and summer is augmented by pumping from the Upper Floridan for irrigation in the area. In addition, the similarity in water-level trends between the upper Brunswick and the Upper Floridan aquifers, shovip:' ii is figure 10, probably results from hydraulic cminebti~n between the two- aquifers. This hydraulic c_onnecti'OJJ, the result of a greater percentage of sand .m:~,t~(;; such' confining unit underlyip.g the upper Brunswick aquif~r: in Bulloch County than in coastward areas, ~s Wayne County. ;,', 65r-----.-----r-----~----~----~~~ 31U009 Upper Brunswick aquifer (160210 ft) Upper and. Lower Floridan aq'ulfers (315860 ft) 85~----~--~~----~----~--~~--~ 1982 1983 1984 1985 1986 1987 CALENDAR YEAR Figul'e 10.--Daily mean water levels in the upper Brunswick and Upper and Lower Floridan aquifers, Hopeulikit site, Bulloch County, 1983-87. Water levels in the upper and the lower Brunswick aquifers in the Brunswick area, show almost noseasonal fluctuations, and primarily are influenced by changes in nearby pumping from the Upper Floridan aquifer. In this area, the aquifers are not widely used, are distant from the outcrop areas, are deeply buried (about 280 and 400 ft below land surface, respectively), and are separated from the surficial aquifer by a clayey confining unit that is 52 ft thick (pl. 2). Long-term water-level trends in the Brunswick area are illustrated by the hydrograph for well 32H001, which taps both the, upper and the lower Brunswick aquifers (fig. 11). In 1939, the hydraulic head was about 49 ft above land surface and the well flowed at a rate of about 30 gal/min. By 1986, the head had declined more than 44 ft, and was less than 5 ft above land surface. This decline corresponded to increased pumping and waterlevel declines in the Upper Floridan aquifer, primarily in the Brunswick area. During 1959-81, the water level in the Upper Floridan aquifer declined about 20 ft in well 33H052, and the water level in the upper and the lower Brunswick aquifers declined about 17 ft in well 32H001; both declines resulted primarily from increased pumping from the Upper Floridan. In both wells, the water-level rise in 1982, which continued into 1984, largely was the result of about a 10 Mgaljd decrease in industrial pumping from the Upper Floridan. The similarity in water-level fluctuations in the aquifers indicate that there is hydraulic connection between the upper and the lower Brunswick and the Upper Floridan aquifers in the Brunswick area. Floridan Aquifer System The Floridan aquifer system, formerly known as the principal artesian aquifer in Georgia, consists of interbedded clastics and marl in the updip area and massive limestone and dolomite more than 2,000 ft thick in the downdip area (Krause and Randolph, 1989). The Floridan aquifer system, primarily of Eocene age, is hydraulically connected in varying degrees, but has been divided into the Upper and Lower FlQridan aquifers in most of the study area. Upper Floridan Aquifer In the coastal area, the Upper Floridan aquifer primarily consists of limestone of the Oligocene unit and limestone and dolomite of the upper Eocene unit. Generally, the uppermost part of the aquifer is most permeable, and it consists of vuggy, highly fossiliferous limestone of Oligocene (where present) and late Eocene age (Ocala Limestone). a: 0 32H001 Upper and lower Brunwick aqulfcn (298500 ft) ,, 0 ".Jo,.-J \Jl ~ 33H052 Upper Floridan aquifer (!160112!1 ft) lAi~MI lll./: -S ':::.,-::.,~u..J...'-'-'-'::0'-'-'-'-'-I...J....I_-'-'::'0_.L..L..L..L..J._.L..LJ-':<>:'-'-'-'-'-l....U.-L...L.JOLl...L.l...LJ..J"' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ CALENDAR YEAR Figure 11.--Periodic water levels in the upper and lower Brunswick aquifers at well 32H001, and in the Upper Floridan aquifer at well 33H052, Glynn County, 1939-86. The top of the Upper Floridan aquifer is defined as the top of the Oligocene unit, and w~ere Oligocene sediments are absent, by the top of the upper Eocene unit. Thus, the top of the aquifer throughout the study area coincides with the C-marker horizon (pl. 7). In parts of Camden and Wayne Counties, the Oligocene unit is absent, and the top of the aquifer consists of limestone of late Eocene age. Depths to the top of the aquifer below land surface may be estimated by subtracting the altitude of the base of the Miocene (pl. 7) from the altitude of the land surface shown on U.S. Geological Survey 7 1/2-minute topographic maps. Depths to the top of the aquifer at the nested-well sites range from about 110 ft at the Fort Pulaski site in Chatham County to about 530 ft at the Kings Bay site in Camden County (pl. 2). Generally, the aquifer is shallowest near the Beaufort Arch (feature 8, fig. 2) in the northeastern part of the study area, and deepest along the depression in northeastern Glynn County near Sterling (feature 5, fig. 2). According to Miller (1986, pl. 28), the Upper Floridan aquifer ranges in thickness from less than 200 ft in Effingham County to more than 700 ft in southeastern Camden County, near the Kings Bay nested-well site. At the other nested-well sites, the aquifer ranges in thickness from about 250 to 260 ft at 29 the Skidaway and Fort Pulaski sites, respectively, in Chatham County (pl. 2) to about 460 ft at the Brunswick Pulp and Paper Company site in Glynn County (pl. 2). Permeable Zones The Uppe:r Floridan aquifer in the study area consists of several permeable water-bearing zones that are separated by layers of dense limestone or dolomite that act as semiconfming units (pl. 2). These lowpermeability units have persisted because they do not allow vigorous circulation of ground water. Circulation is more rapid through vuggy, fossiliferous zones of high primary porosity thus forming the water-bearing zones as secondary permeability has developed. The limestone of the low-permeability zones probably is dolomitized in part and is highly micritic in part (Miller, 1986). McCollum and Colln.ts (1964) conducted flowmeter tests in wells hi the Savannah area to determine water-yielding zones in the Floridan aquifer system. Five freshwater-bearing zones were delineated (McCollum and Counts, 1964). Krause and Randolph (1989) assiged the upper two zones to the Upper Floridan. aquifer and the lower three zones to the Lower Floridan aquifer. The flowmeter tests indicated that about 70 percent of the flow was from the upper two zones. At Skidaway Island, zone 1 is near the top of the upper Eocene unit, and is about 44 ft thick (pl. 2). Zone 2 is near the bottom of the upper Eocene unit, and is about 35 ft thick at Skidaway Island. . McCollum and Counts (1964) reported that zones 1 .and 2 merge into one unit in southwestern South Carolina. The Upper Floridan is comprised of tw9 freshwater permeable zones in the Brunswick area; the 1 "upper and the lower water-bearing zones" as described by Wait and Gregg (1973). These zones are shown for the Coffm Park and the Brunswick Pulp and Paper Company nested-well sites (pl. 2). The thickness of the upper water-bearing zone ranges from about 85 to 180, ft, and the thickness of the lower water-bearing zone ranges from about 15 to 110. ft. The two zones are separated by. a low-permeability, semiconfining unit that ranges in thickness from about 150 to 200 ft, and which pa~tially restricts flow between the . zones. Outside the Brunswi~k area, the areal extent of the semiconfining un~t is n,ot well known because of lack of data. However, the unit has been identified as far south as Kings Bay in Camden County (pl. 2), but has not b~en recognized as far west as Jesup in Wayne County; Hydraulic Properties The Upper Floridan aquifer is most productiVe where it is thickest, and where secondary permeabilitY is most developed. Based on field values from aqli,ifet tests and results of model simulation (Krause' EXPLANATION -50-POTENTIOMETRIC CONTOUR--Shows altitude at which water level would have stood In tlghtiy cased wells. Contour Interval 10 feet. D!!tum Ia sea level I ----! ~ \ 10 0 ! 20 III I .1' f I II I llllfi II ' . I.' ' - I 'I I 30 40 MILES I 0 I 0 20 30 40 KILOMETERS Modified from Clarke (1987) Figure 12.--Potentiometric surface of the Upper Floridan aquifer in the coastal area, May 1985. 32 38Q004 Lower Floridan aquifer / (606-657 ft) 38Q002 Upper Floridan aquifer (11 0-348 ft) ..40 .".' "' "' .0 : .:"' .... : CALENDAR YEAR Figure 13.--Monthly mean water levels in the Upper Floridan aquifer at well 380002 and in the Lower Floridan aquifer at well 380004, Fort Pulaski, Chatham County, 1971-87. 20r---,----r---,----r---,----r--~--------,--- Lower Floridan aquifer 33Hl88 15 Fernandina permeable zone (2.1382.720 ft) w (,) =.<... 10 ::;, IJJ Qz: < 5 ..l I - ,.., I\.: ,. ....., it 0 0 1'1'111'.r~r~'J I I _j =.w.l =0 5 ~ +5 w :> = 0 < 0 33H127 .1ww..-. :!!: 5 ..; w w:> 10 ..l = w 1<- 15 it "I I I I I I I \I UpperFioridan aquifer Upper water-bearing zone (520790 ft) 75 77 ...u IIJ = 120 IIJ <1- ~ 125 37Ql86 Lower Eocene and Paleocene units (1.386-1.520 ft) 8'-nk where data rni..lnt 37QI85 Upper Floridan aquifer 1274-360 ft) 130 135 1985 Blank where data mlaaing 1986 CALENDAR YEAR 1987 Figure 15.--Daily mean water levels in the Paleocene unit in well370186 and in the Upper Floridan aquifer in well370185, Hutchinson Island, Chatham County, 1985-87. 38Q002 Upper Floridan aquifer (110348 ft) CALENDAR YEAR 1987 Figure 16.--Daily mean water levels in the Upper Floridan aquifer at well 380002 and in the Paleocene unit and late Cretaceous-age rocks at well 380201, Fort Pulaski, Chatham County, 1986-87. 25~--~--~--~----~--~---L--~--~----~--~ 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 CALENDAR YEAR Figure 14.--Monthly mean water levels in the brackishwater zone and Fernandina permeable zone of the Lower Floridan aquifer, and in the upper and lower water-bearing zones of the Upper Floridan aquifer, Glynn County, 1978-87. 33 Lower Floridan Aquifer The Lower Floridan aqUifer' consists of dolomitic limestone, primarily of the middle and lower Eocene units. The Lower Floridan includes coarsely pelletal, vuggy, commonly . dolomitized limestone of the Paleocene unit and deeper units of Late Cretaceous age locally in the Brunswick area (Miller, 1986, p. B70). Because few wells penetrate the Lower Flo:ddan, information is sparse. Depth to the top of the aquifer below land surface ranges from 570 to 765 ft in the Savannah area to about 1,000 ft in the Brunswick area (pl. 2). For further definition of the top of the aqUifer, see Miller (1986) and Krause and Randolph (1989). The aquifer ranges in thickness from less than 106. ft in the northern part of the study area to nearly 2,500 ft locally in the Brunswick area (Miller, 1986, pl. 32). At the nested-well sites, information on the thickness of the aquifer is limited to the Savannah area and the Hopetilikit_ site in Bulloch County (pl. 2). In the Savannah area, the aquifer ranges in thickness from 120 ft at Skidaway Island to 195 ft at Hutchinson Island. The aquifer is about 180 ft thick at the Hopelllikit site. .. .' .. _, Permeable Zones The Lower Floridan contains low-permeability zones that act as semiconfming units similar to those in the Upper Floridan aquifer. Locally, these seiniconfining units divide . the Lower Floridan into individual permeable zones. The permeability of the Lower Floridan generally decreases to the west and to the north of Brunswick, ~n:d is extremely low in the Savannah area. The Lower Floridan is comprised of at least three separate water-bearing units in the Brunswick, area m (Krause and Randolph, 1989). They are, descending order, the "brackish-water zone" and "deep freshwater zone" of Gregg and Zimmerman. (i974), and the "Fernandina permeable zone" of Krause and Randolph (1989). The brackish-water zone and the deep freshwater zone consist of limestone and dolomite of the middle Eocene unit, and are described by Gregg and Zimmerman (1974, pl. 1). The Fernandina permeable zone consists of pelletal, recrystallized limestone and fmely crystallized dolomite of the lower Eocene and Paleocene units. The zone extends from northeastern Florida into Mcintosh County, Ga. The zone includes rocks of Late Cretaceous age in the Brunswick area. The zone ranges in thickness from about 100 ft in the Jacksonville, Fla., a,rea to more than 500 ft at Brunswick, Ga. (Krause and Randolph, 1989). In the Savannah area, zones 3, 4, and 5, of McCollum and Counts (1964) that have relatively higher permeability and that are within the middle Eocene unit were assigned to the Lower Floridan aquifer by Krause and Randolph (1989). These zones were first identilled through flowmeter tests con:dpcted by McCollum and Counts (1964). The tests indicated that zone 3 yielded from 2 to 8 percent, and zones 4 and 5 yielded from 3 to 20 percent of the total yield to an mul~i-aqUifer wells that tapped five zones. 'j, Hydraulic Properties Because few wells tap the Lower Floridan aquifer, little information is available on its water-bea~ing properties. _Krause and Randolph (1989) estimated from geophysical logs and thickness data: that , the transmissivity of the.Lower Floridan ranges frpm 2,000 t<;> 216,000 ft2/d .over most of the coastal area. ObserVations recorded during pumping. oftest wells for water-quality sarilpling and flowmt;tet tests conducted by :tv,fcCullum aritl Counts (1964) indicate that ,the transmissivity is significantly lower in the Savati,nah atea. Vertical variations in the water-bearing properties .. of the Lower Floridan aquifer were dempnstrated by-~ pumping several test wells in Chatham County. Well 37Pl13 at Skidaway Island (pl. 2) tapped the upper part of the Lower Floridan, and yielded an estimated 25 : gal/min and had a drawdown of 25.7 ft, which resulted in a specillc capacity of 0.97 (gal/min)/ft. . Well38Qi96 . tapped the lower part of the aquifer at Fort Pulaski (pl. 2) and yielded about 5 to 10 galjmin and had a , drawdown of ab'out 52.4 ft, which resulted in a specific capacity of about 0.10 to 0.19 (gal/min)/ft. Transmissivity values of .less than 100 f~/ d wbre estimated by applying these specific capacity vah.J,~s to the modified nonequilibrium formula of Cooper and Jacob (1946) as described in Ferris and others (1962) and by using a storage coefficient ranging between ;l_x 10-S and 1 x 10-..4... . ---. . .. - . ' ., . 34 Ground-Water Pumpage The Lower Floridan is not widely used for water supply in coastal Georgia because it is deeply buried, it contains saline water in much of its area of occurrence, and because the overlying Upper Floridan is an excellent source of good quality water. The aquifer supplied an estimated 0.01 Mgal/d to the town of Hiltonia in Screven County in 1980, through multiaquifer wells that tapped both the Upper and the Lower Floridan (R.B. Randolph, U.S. Geological Survey, written commun., 1987). In Allendale, Beaufort and Jasper Counties, S.C., the aquifer supplied 4.01, 3.41, and 0.016 Mgal/d, respectively, in 1980. The Lower Floridan is extensively developed in northeast Florida (Krause and Randolph, 1989). Water Levels The water level in the Lower Floridan aquifer primarily is influenced by pumping from the Upper Floridan aquifer. Withdrawal of water from the Upper Floridan induces upward flow from the Lower Floridan. Although well yields are low, the Lower Floridan is tapped along with the Upper Floridan in several municipal and industrial wells in the Savannah area (appendix B). Water-level fluctuations and trends in the Lower Floridan are nearly identical to those in the Upper Floridan, which indicates hydl:aulic connection between the aquifers, as can be seen on the hydrograph in figure 13. Although th'e Lower Floridan is not used in the Brunswick area, water-level fluctuations in the aquifer are closely related to those in the overlying Upper Floridan aquifer. Water from the Lower Floridan moves upward into the heavily pumped Upper Floridan by leaking through conduits, solution-enlarged fractures, or possibly faults in the otherwise lowpermeability semiconfining unit. The water level in the brackish-water zone and the Fernandina permeable zone of the Lower Floridan showed the same trend during 1978-87 as the upper and the lower waterbearing zones of the Upper Floridan (fig. 14). Well 34H391 taps the brackish-water zone and shows almost immediate response (indicated by spikes and peaks on the hydrograph) to reductions in industrial pumping from the Upper Floridan. The similarity in water-level trends shown in figure 14 for well34H391; well33H188, which taps the Fernandina permeable zone; and wells 33H133 and 33H127, which tap the Upper Floridan, suggests hydraulic connection between the aquifers. Water levels in sediments underlying the Floridan aquifer system in the Savannah area may be affected by local pumping from the Floridan or by pumping from aquifers of equivalent age outside the Savannah area, or both. Well 370186 at Hutchinson Island taps dense argillaceous limestone of the lower Eocene unit and the Paleocene unit in the interval1,380 to 1,520 ft below the Lower Floridan aquifer (pl. 2). The water level in well 370186 seems to show a delayed response to waterlevel changes in the Upper Floridan aquifer, which is heavily pumped in the Savannah area (fig. 15). Confining Units The confining unit between the surficial and the upper Brunswick aquifers consists of silty clay and dense, phosphatic limestone or dolomite of Miocene unit A (pl. 3). The unit ranges in thickness from about 15ft at the Hopeulikit site in northern Bulloch County to about 70 to 90 ft at the nested-well sites at Brunswick in Glynn County (pl. 2). In the Brunswick area, Wait and Gregg (1973) determined from laboratory analysis that the vertical hydraulic conductivity of undi~urbed cores of the confining unit ranged from 5.3 x 10- to 1.3 x 10-4 ft/d at well34H132 (table 2). The upper and the lower Brunswick aquifers are separated by a confining unit that consists of silty clay and dense, phosphatic limestone or dolomite of Miocene unit B (pl. 3). The confming unit ranges in thickness from about 10 ft at the Gardi site in Wayne County to about 50 ft at the nested-well sites in the Brunswick area (pl. 2). The confining unit between the lower Brunswick and the Upper Floridan aquifers consists of silty clay and dense phosphatic limestone or dolomite of Miocene unit C (pl. 3). The confining unit ranges in thickness from about 20ft at the Gardi site to about 40 ft at the nested-well sites in the Brunswick area (pl. 2). The vertical hydraulic conductivity of undisturbed cores of the confming unit at Brunswick, as determined from laboratory analysis, ranges from 1.07 x 10-2 to 1.74 ft/d (Wait and Gregg, 1973, table 9) (table 2). 35 Table 2.--Hydraulic conductivity of core samples. Savannah and Brunswick areas [Geologic unit: PM, Post-Miocene Unit; A, Miocene unit A.; B, Miocene unit B; C, Miocene unitC; 0, Oligocene unit; UE, upper Eocene unit; ME, middle Eocene unit; LE, lower Eoc.ene unit Analyses in Chatham County from Furlow (1969); analyses at wells 34H132 and 33H114 froni\Vait (1965); an~yses at well 34H337 from Wait and Gregg (1973); --,no horizontal] '~ i :--.' ' . Site Interval no. (ft) Lithology. Geologlc unit :, Hydraulic conductivity (ft/d) Vertical HoriZontal . . ".~ ~'"--" .. . Chatham County 38Q203 380202 38P015 38P016 39P003 39P002 106 Sandy clay with pebbles 114 Sandy clay 122 do. 142 ... Chalky liniestone 103 i14~' 120-1.36 . . :."J~:.t ~-J ~; . ~andy clay. .;'Clay . Calccireous ,. sand 141 Clay 146 do. 151 do. '' 164 do. 168 Sandy clay 196. Chalky limestone 211-214 do. 226-241 do. 122 Sandy clay 132 Sand 141 do. ,,,, ~) ' 159 Sandy day 96 Sandy clay 102 do. 111 do. 119 do. 123 Clay B B B 0 B "''"~ B B " B ' B B B 0 0 ,Q B B B c B B B .B B 1.2x 104 6.7x 105 1.2x 10-4 1;070 1.3 x Hr5 4.0 xlo-4 13 X 102 :>: 1.3 X 10-3 ., l.lx.lo-4 5.3:'x1o-5 4.0 X 1o-4. 5.3 X 1o-5 8.0 8.0 X 10-4 4.0 X 10c3 2.7x 1o-4.: ,, 5.3 X 1o-4 1.1 X 1o-3 5.3 X 1o-5 1.3 X 1o-2 2.7 x10-4 1.3 x1o-4 4.0 x 1Q-4 2.7x 1o-4 8.0x 1o-5 9.4x 1b-5 1.3 X 1Q-4, 1,7.38 9.4x 1o-5 ' )'_, 4.0 X 1Q-4 36 . Table 2.--Hydraulic conductivity of core samples. Savannah and Brunswick areas--Continued [Geologic unit: PM, Post-Miocene unit; A, Miocene unit A; B, Miocene unit B; C, Miocene unit C; 0, Oligocene unit; UE, upper Eocene unit; ME, middle Eocene unit; LE, lower Eocene unit. Analyses in Chatham County from Furlow (1969); analyses at wells 34H132 and 33H114 from Wait (1965); analyses at well34H337 from Wait and Gregg (1973); --, no horizontal] Site Interval no. (ft) Lithology Geologic unit Hydraulic conductivity (ft/d) Vertical Horizontal Glynn County 34H132 166-185 229-232 475-478 496-497 519-539 560-580 642-662 682-702 744-765 867-888 ___J 970-990 1,046-1,051 1,053-1,065 1,072-1,084 1,134-1,154 33H114 615-635 708-712 800-812 900-912 33H337 118-128 178-188 547-567 567-587 587-607 678-698 779-799 935-954 1,088-1,105 1,490-1,503 Fine sandy, silty clay do. Fine argillaceous sand do. Fossiliferous limestone do. do. do. do. Dolomitic limestone do. do. do. do. do. Fossiliferous limestone do. do. Dolomitic limestone Clay do. Fine grained sandstone Sandy limestone Fossiliferous limestone do. Limestone do. do. do. A 5.3 X 105 A 1.3 X 10-4 c 1.07 c 1.74 0 0.94 UE 1.2 UE 6.68 UE 18.72 UE .4 UE 2.7x 102 UE 4.0 X 102 ME 1.3 X 105 ME 4.0 X 105 ME 5.3 X 105 ME 2.7x 104 UE .67 UE 21.39 UE 1.3 X 103 UE 1.3 X 1Q-4 A .27 A 1.07 c 1.07 X 102 0 .4 UE 160.4 UE 120 UE 6.68 LE 8.0 X 106 LE 4.0 X 106 LE 5.3 37 m The Upper Floridan aquifer the Savannah area and in Bulloch County is confmed above by silty clay and dense phosphatic limestone or dolomite of Miocene unit B and Miocene unit C. ' The lower Brunswick aquifer is absent in these areas, and the confming unit above the Upper Floridan ranges in thickness from about 14ft at the Fort Pulaski site to 120 ft at the Bulloch. south site (pl. 2). Analyses of undisturbed cores in the Savannah area (Furlow, 1969) indicated the vertical hydraulic conductivity of this confining unit ranged from 5.3 x 10-5 to 1.3 x 10-2 ft/d, and the horizontal hydraulic conductivity ranged from 8.0 x 10-5 to 4.0 x 104 ft/d (table 2). The ratio of vertical to horizontal hydraulic conductiv:lty at three of the sites rHillonia ?, + - - I S - LINE OF EQUAL CHLORIDE CONCENTRATION- Dashed where approximately located. Interval varies C'~if.r. I ?' .... SYLVA'-:!A 0 DATA POINT--Number is chloride concentratiou, in milligrams per liter 32' + c-:- _/ l , ___ _L_ CHARLTON Okefenokee ~ /SAPELO ISLAND < u J 0 + ('LIMDERLA:'\D ISLA:-: I) 0 10 20 30 ~IlLES J~,r~,l~'ol~,:~,1,uii~l~!-rl---,l~1----~1 0 10 20 30 KILmiETERS Bu:-.t.: Crnm U.S. (j~.:olngical ~un~.:y, ~Ia!.: ba:-.1.: m~1p 1:1.000.000, l'J71l ~ .. /~J ,( /I /,J{r Figure 20.--Chloride concentrations in the Upper Floridan aquifer in the coastal area, October-November 1984. 47 Chloride concentrations in the Upper Floridan in most of the coastal area are less than 40 mg/L. Chloride concentrations are relatively low because, in most places, the aquifer (1) is deeply buried, (2) is overlain by a confining unit of low permeability,. (3) has sufficient hydraulic head to prevent landward migration of the freshwater-saltwater interfae (saltwater encroachment), and (4) flow was sufficiently active to flush out connate water. Water from the Lower Floridan aquifer is saline and unsuitable for human consumption in much of the study area. For example, the.chloride concentration of water from the Fernandina petin~able zone in well 33H188 in Glynn County, ranged from 20,000 mg/L iii. the upper part (Gill and Mitchell, 1979) to 30,000 mg/L in the lower part (Krause and Randolph, 1988). The source of the high chloride conc.entrations j!i incomplete flushing of connate water in the rocks rather than saltwater encroachment (Gill and Mit<;bell, 1979; Krause and Randolph, 1989). Locally, chloride concentrations in the Lower Floridan aquifer are less' that;t, th~ 250 mg/L drinkingwater standard. For example, at well' 34H436 in Brunswick, the chloride concentration in water from the upper part of the Lower Floridan is 31 mg/L (appendix C). The lower concentrations may be the result of greater flushing of the aquifer owing to its .high permeability. , Improperly constructed or abandoned wells with ruptured well casings can cause higher chloride concentrations; which may account for some of t~e locally higher concentrations in the Upper Floridan, especially in areas of minimal pumping (ftg. 20). Ail example of the effect that an improperly constructed well can have on chloride concentrations is illustrated by the chloride graph for well 33G001 in western Glynn County (ftg. 21). Well 33G001 was drilled in March . 1954 to a total depth of 2,050 ft, cased. to 694 ft, and completed as an opfm hole for oil-test purposes. ,When originally constructed, the well tapped both the Upper Floridan and the Lower Floridan aquifers. Because of an upward head gradient in the area, saline water from the Lower Floridan aquifer flowed up the well bore and discharged to the Upper Floridan, which resulted in an anomalously high chloride concentration in the Upper Floridan near the well (ftg. 20). In October 1982, the well was modified to tap only the Upper Floridan by plugging the borehole from 1,457 to 1,482 ft. P.dor to modification, in April 1982 the well yielded water having a chloride concentration of 2,385 mg/L (fig. 21). , Following modification, in October 1982 the chloride concentration decreased to 220 mg/L, and by October 1986 the concentration decreased to 51 mg/L. The decrease in concentration after well modification was attributed to isolation of the Upper Florid~h aquifer and its flushing by lateral freshwater flow. Gregg ~d Zimmerman (1974) reported that similar problems associated with well construction occurred at the Babcock and Wilcox Inc., and Hercules Inc., well fteids, and at the Massey oil-test well (33G003), southwest of Brunswick. VJ 104 ::E = < t:) :..:.;. i 336001 !5 .,._i=: OUJ -~- ==<-' !-UJ Zc. uUzl u 0 Uc l ii: .0... u:J: 10 1981 1982 1983 1984 1985 1986 1987 CALENDAR YEAR Figure 21.--Chloride concentration in the Upper Floridan aquifer at well33G001, Glynn County, 1978-87. Saltwater has the potential to enter the Upper Floridan aquifer in the Savannah area by encroachment from the sea or by upward leakage from deeper zones. McCollum and Counts (1964, p. D16-D20) reported that chloride concentrations in the Upper Floridan aquifer are high to the east and northeast of the center m of pumping Savannah. Chloride concentratiorls greater than 2,500 mg/L were reported by McCollum (1964) at Parris Island, S.C., about 30 mi northeast of Savannah, Ga. McCollum and Counts (1964, p. DlQ) estimated that at a pumping rate of 62 Mgaljd it woul~ take about 400 years for saltwater from the Parris Island, S.C., area to reach the pumping center at Savannah, Ga. Clarke and others (1985) reported that in the Upper Floridan there had been no substantial increase in chloride concentrations in water samples collected in wells in the Savannah area during the past . ;._, 48 20 years. The chloride graphs in figure 22 indicate that chloride concentrations in the Upper Floridan aquifer are relatively stable. - a.6oo a.IOO =11.1 5 4.800 = 2,000 11.1 ~ Bottom of open Interval (ft) Aquifer code Type of available logs Glynn County--Continued 34H320 34H328 34H334 34H337 34H338 34H339 34H341 34H343 34H344 34H345 34H346 34H347 34H348 34H350 34H351 34H354 .Gentile, Benny USPS Ft. Frederica USGS1W04 USGS 1W OS (PTl) Beverly Shores Oxidation Georgia Motor Lodge Brockington, Alfred USNPS Ft. Frederica USGS1W07 American National Bank Sea Island Yacht Club Roberts, L.D. - Quick Clean Laundry Engie, Marvin Twin Oaks Drive~In USGS1W08 34H355 USGS1W09 34H356 34H357 34H358 34H359 34H361 34H362 34H363 34H364 34H366 34H368 34H369 34H370 34H371 34H372 34H373 34H374 34H376 34H377 34H378 34H379 34H380 34H381 34H382 34H383 34H384 34H385 34H386 Lewis Crab CO. 5 Troupe Creek Marina Olsens Yacht Yard Beverly Shores, 4 Middleton Estates Bloodworth, F.H. USGS1W10 Kennedy, RL. First Baptist Church Sea Harvest Packing Glynn Co. Golf COurse Ellzey, C.M. USGS1W11 Harrington, L. USGS1W13 USGS1W14 St. Francis Xavier Church Stopchuck, Mike Seapak Corporation Harris, A.M., Sr. McGraw, RO. Beggs, R Rushing, Alton Derry, Inez Brunswick Country Club Champion, E.M. (1) Tollison, H.K 311224 311319 310938 310824 311227 311306 311232 311324 310938 310857 310952 310949 311024 311059 310956 310924 310924 310827 311342 311007 311224 311120 311024 310822 310819 310848 311347 311437 311028 310818 310832 310940 310953 310841 311108 310915 310805 310928 310959 311032 311154 311319 311016 310907 812231 19.56 1960 577 812329 12.38' 12-01-1937 600 812853 8.33 09-01.:1962 800 812942 8.85 05-01-i963 567 812830 16.07 06-01-i962 576 812755 14.48 02-01-1963 581 812230 13.94 12-01-1962 855 812318 9.83 07-01-1963 > 480 812852 8.29 04-01-i964 504 812935 12 i964 560 812444 7.77 i962 546 812806 6.90' 10-01-1963 520 812932 12.80 03-01-1964 536 812404 6.48 1963 450 812949 16.63 08-01-1964 524 812952 13.76 06-01-i965 804 812952 13.98 06-01-1965 523 812942 8:16. 07-01-1965 s78 812701 7.29 04-01-1965 595 812458 5.55) 02-01-1966 . 589 812837 18.93 02- -1965[>; 565 812248 12.90 1966 577 812419 13.67 . 06-01-1965 576 812958 2 06-01-1966 612 812940. 9.55 234 812932 8.19 1956 529 812720 9.09 07-01-1966 588 812842 23.23 08-27-1966 642 812739. 7.58' 1966 569 812936 9.49 10-01-1966 606 812921 10.83 11-01-1963 566 812933 > ' 9.28 10-01-1966 512 812959 '17.02 11-01-1966 527 812938 6.55 12-01-1966 543 812829 9.06 11-01-1966 522 812307 15 01-31-1967 530 812916 11 1967 140 812944 15 348' 812325 10 1967 496 812841 9 1959 546 812300 10 06-01-1967 590 812758 13 05-01-1967 594 812942 14 1948 500. 812907 11.76 1961 612' 685 640 980 919 767 755 993 670 770 780 800 750 787 576 760 1,003 785 624 774 765 740 724 803 744 402 791 788 796 743 700 733 719 696 66o 630 810 500 440 630 690 758 792 572 773 UB,LB,VF E UF UP L~,UF UF D,E,J,T C,D,E,J ,,, . :E,J,V . UF E,J UP E,J LB,UP E,J UF 'C,D,E UF LB,UP UF ~~ E,'J l UF .E,J, LB,UF E;J, uUpF E,J . ,,, TC,,Eu,;f,J,N; UF:. UF .. :. :. C,E,P,G,N; ',t;~J..': c,E,J,T UF E,) UF E,J UF UF E,J UF E,J UF A,E,J s E,J UF E,J UF E,J UUFF ,- ,,. C,D,E,J E,J UF E,G,J UF E,J UP E,G,J UF E,G,J UF E,J UF E,J LB,UP J,E S,UB,LB C,E,J UB,LB E,J UF C,E,J UF E,J UF E,J LB,UP E,J LB,UP E,J UP E,J 82 Appendix B.-Record of selected construction information and available geophySical logs for wells in the study area-Continued. [Aquifer: S, surficial; UB, upper Brunswick; LB, lower Brunswick; UF, Upper Floridan; LF, Lower Floridan; D, Dublin aquifer; TH, test hole only, no aquifer tapped. Type of geophysical logs available: A, time; B, collar; C, caliper; D, driller's; E, electric; F, fluid resistivity; G, geologist; H, magnetic; J, natural gamma; K, dipmeter; L, lateral log; N, neutron porosity; 0, micro-lateral log; P, photo video; S, acoustic velocity; T, temperature; U, gamma-gamma; V, fluid velocity; X, core; Z, other. -,data not available] Well no. Well name Latitude Longitude Altitude ofland surface (ft) Date well constructed Top of open Interval (ft) Bottom of open Interval (ft) Aquifer code Type of available logs GI:rnn County--Continued. 34H387 College Pl. Methodist Church 311115 812913 16 1964 100 120 s 34H388 Reu,A.H. 311419 812319 10 03-01-1963 631 804 UF E,J 34H389 Golden Shores 5 310852 812951 8.11 01-11-1968 524 737 UF E 34H390 Hercules Inc., Parking Lot 310947 812838 10 1968 407 409 LB E,J 34H391 USGSTW16 310818 812942 7.13 04-01-1968 1,070 1,158 UF A,C,E,J 34H392 Brunswick Jr. College 311108 812905 16 05-01-1968 541 660 UF C,E,J 34H393 USGSTW17 310825 812942 6.95 10-01-1968 615 723 UF A,C,E,J 34H395 Hall, Jim 311032 812243 14 1968 300 573 S,UB,LB, E,J UF 34H397 Sea Island Golf (69) 310839 812422 10 1969 484 1,061 LB,UF E,J 34H398 King Shrimp Co. 310749 812904 7 07-20-1969 622 720 UF C,E,J 34H399 USGSTW19 310749 812920 5.54 09-01-1969 1,075 1,218 UF A,C,E,F,J,Z 34H400 USGSTW20 310936 812949 12.50 09-01-1969 524 756 UF A,C,E,J 34H401 USGSTW21 310945 812955 13.16 09-01-1969 525 756 UF A,C,E,J 34H402 USGSTW22 310945 812955 13.21 09-01-1969 815 946 UF A,C,E,J,Z 34H403 USGSTW24 310822 812942 9.56 09-01-1970 788 982 UF A,C,E,J,N, T,Z 34H405 Suddath Van Lines 311422 812654 10 1971 585 702 UF E,J 34H406 Camp Islander 311354 812236 10 1971 621 721 UF E,J 34H408 Van Diviere Oil Co. 311200 812945 17.99 08-01-1971 588 703 UF E,J 34H409 Thrower, Charles 34H410 Laws, John, Sr. 311346 812644 8.05 09-01-1971 605 728 UF E,J 311211 812746 6.50 09-01-1971 5n 724 UF E,J -< - 34H411 Hercules Inc., R 34H412 Hercules Inc., Q 311003 812857 13 05-01-1972 540 698 UF 311019 812922 15 11-02-1972 548 630 UF E,J C,D,E,J 34H413 Hercules Inc., S 310951 812846 10 02-27-1973 550 838 UF C,D,E,T 34H414 King & Prince Hotel 34H416 Lewis Crab Co. 6 310938 812350 15 07-01-1973 556 708 UF 310827 812943 8 08-15-1969 117 240 s E,J,T 34H424 Hercules Inc., T 311011 812931 15 02-13-1976 550 745 UF C,D,E,F,J,N, T,U 34H425 Hercules Inc., U 311016 812858 12 05-12-1976 550 700 UF D 34H426 USGSTW25 31'0938 812852 8.30 10-01-1976 1,027 1,211 LF 34H427 Champion, E.M. (02) 311016 812942 14 11-01-1977 500 640 LB,UF 34H428 UGA Marine Extension Serv. 310816 812939 10 05-21-1980 152 180 s 34H429 First Baptist Church 310851 812932 9 1981 140 160 s (shallow well) 34H430 Champion, E.M. 311016 812942 15 1977 100 200 s (shallow well) 34H431 Riley, Joe 34H432 Griffin, Fred 311220 812852 16 311139 812255 12 1972 113 180 s 1977 140 260 s 34H434 Glynn County Courthouse 310911 812941 10 1982 530 670 UF J 34H435 ABC Horne & Health Service 311121 812811 8 697 J 34H436 Coffin Park TW 1 310901 812844 6.62 10-20-1983 1,000 1,103 LF C,E,F,G,J, N,P,S,T,V 34H437 Coffin Park TW 2 34H438 Coffin Park TW 3 310901 812844 7 11-01-1983 313 328 UB 310901 812844 7 11-09-1983 192 202 s 34H439 USGS TW 02 (PT 1) 311021 812952 13.91 1974 540 566 UF 83 Appendix B.-Record of seJ~;cted construction .infonnation and available geophysical logs for wells in the study area-Continued. [Aquifer: S, surficial; UB, upper Brunswiclc; LB, lower Brunswick; UF, Upper Floridan; LF; Lower Floridan; D, Dublin aquifer; 'Til, test hoie only, no aquifer tapped. Type ofgeop)lysicallogs avajlable: A, time; B, collar; C, caliper; D, driller's; E, electriC; F, fluid resistivity; G, geologist; H, magnetic; J, natural gam~a; K, dipmeter; L, lateral log; N, neutron porosity; 0, micro"latera:llog; P, photo video; S, acoustic velocity; T, temper~tu:r:e; U, gamma-gamma;. V, fluid' velocity; X, core; Z, other......, data not available] Altitude Top of Bottom of of land open open Type of Well ,::''(\\ ~- 1, surface Date well Interval Interval Aquifer available no. Well name Latitude Longitude (It) constructed (It) (fl) cOde logs Glmn Count:~::--Continued.. .f!~ : 34H443 34H445 34H446 34J009 Lewis Crab Co. 7 Brunswick COffin Park PS East COast Ice Co. Newhope Plantation 310828 310902 310829 311811 812942 812843 812945 812651 8 03-01-1986 236 7 12-20-1986 . sso 8. i982 38ii 9.39 i96b 580 4.50 S,UB,LB 824 UF 450 UB,LB 780' LB,UF C,D,E,i;'i1 . : )..; E,J . ;::: . ..!.I"~ 34J021 Job Corp. 311525 812717 16.84 05-01-1954 602 998 LB,UF C,E,J,T 34J025 Altama Plantation (1966) 312007 812939 17 1966 633 716 UF E,J,T 34J029 Wilder, H. 311854 812751 5.27 1969 686 866 UF C,E,J 34J048 Humane Society 311509 812641 13.96 05-01-1970 605 702 LB,UF E,J 34J049 Glynco Jetport 311557 812746 2455 08-01-1970 640 788 UF E,J 34J050 Altama Plantation 71 311939 812846 22 04-01-1971 688 824 UF E,J 34J051 34J052 34J054 34J055 35H012 Ga. DOT, 1-95 Rest Area Humble/Union Bag 055 King, Ronnie Sylvia, Bob Sea Island Gun Ciu)> (old) 311647 311745 311539 311540 311049 812925 812709 812615 812620 812129 34.70 21 15 15 6J8 12-10-1971 02-03-1958 07-15-1983 1978 709 839 UF E,J,T ..,...... 0 620 144 514 1,589 700 220 640 TH UF s LB,UF ]A.':D'E'G~l;}~.~: . ' . -E (; 35H014 Sea Island County 1 311053' 812102 7 ' 08-01-1928 553 721 LB,UF' .. E,J 35H037 US Coast Guard Station 310845 812226 9.87 580 704 UF J:<;,J,c- 35H040 Verney, G. ;,/ 311331 812119 11.70 10-02-i962 6il 800 UF E,J' 35H042 Sea Island County; 22nd 311146 Street (old) 35H044 Sea Island County Gun Club 311049 812013 812128 7.22 05-01-1963 . \ 6 09- -1966 580 1,042 UF "'"".:: . E,G,J,T, "tr: ., .. , . ~. 598 789 UF E,J (new) 35H045 Sea Palms Hole 1 311200 812212 14.63 1967 607 796 UF C,E,J 35H046 Sea Palms Hole 14 311123 812218 8.60 1967 626 799 UF, E,J 35H047 Olsen, O.H. 311102 812228 7 07-01-1967 583 752 UF E,J 35H050 Sea Island County 311220 811927 8 02-23-1973 560 820 UF E,J (36th Street) 35H053 Churchill, Phillip .. 35H054 Bledsoe, B.E. 311140 812212 10 311158 812212 15 1977 147 360 s 1979 80 100 s 35H055 Smith, Teddie E.. 311342 812143 17 750 J 35J003 Humble/Taylor 01 311516 812058 13 09-07-1959 260 1,075 S,UB,LB,UF A,D,E,G 35J004 Hagen, Dr. Arthur R 311640 812037 10 07-01-1981 700 800 UF 35J005 Pendergast 311653 812028 10 01-06-1983 677 739 UF J Liberty County '1- ' 32N007 Liberty County Road 314631 813804 90 10- -1965 538 689 UF and Revenue 32N010 Johnson, C. 314917 813742 95 10-24-1967 506 700 UF 32N012 Mobley, 1-I.L. 314857 813854 95 1967 546 720 UF 32N013 Deal, J. 314946 814120 85 11- -1969 503 600 UF 33M003 Jones, R. 314323 813005 16 11- -1966 416 600 UF 33M007 Humble/Union Bag 009 33N044 Kelly,J. 314322 314910 813033 813059 16 10-21-1957 10.55 1957 0 333 730 'Til A,J::<:,D,G 460 S,UB,LB,UF E,.J . : 33N076 Minglcdorff, F. 315043 813530 54 08-10-1963 440 682 UF E,J 33N084 Hinesville, Ga. 03 315056 813455 22 1969 403 710 UF D 33N085 Smith, F. 315003 813632 88 05-01-1968 485 600 UF 33N089 Burke, L. 314552 813721 80 09-08-1969 560 660 UF 84 Appendix B.-Record of selected construction information and available geophysical logs for wells in the study area-Continued. [Aquifer. S, surficial; UB, upper Brunswick; LB, lower Brunswick; UF, Upper Floridan; LF, Lower Floridan; D, Dublin aquifer; TII, test hole only, no aquifer tapped. Type of geophysical logs available: A, time; B, collar; C, caliper; D, driller's; E, electric; F, fluid resistivity; G, geologist; H, magnetic; J, natural gamma; K, dipmeter; L, lateral log; N, neutron porosity; 0, micro-lateral log; P, photo video; S, acoustic velocity; T, temperature; U, gamma-gamma; V, fluid velocity; X, core; Z, other. -,data not available] Well no. Well name Latitude Longitude Altitude of land surface (fl) Date well constructed Top of open Interval (ft) Bottom of open interval (fl) Aquifer code Type of available logs Libert:~:: Count:~::--Continued 33N091 Barrett, C.L. 314846 813026 22 04-23-1971 406 500 UF 33N092 HumblejQuatennan 01 315206 813434 29 03-17-1958 0 676 1H A,E,D 33N093 Humble/Union Bag 024 314536 813653 68 11-15-1957 0 825 1H A,E,D,G 33N094 Humble/Union Bag 039 314928 813027 21 12-17-1957 0 1,505 1H A,E,D,G 33N095 Humble/Union Bag 040 314625 813029 17 12-19-1957 0 723 1H A,E,D,G 33N096 Humble/Union Bag 041 314643 813323 16 12-20-1957 0 750 1H A,E,D,G 33N097 Humble/Union Bag 044 314512 813121 17 01-07-1958 0 1,410 1H A,E,D,G 33P019 USA Ft. Stewart Evans 315728 831011 31 08-18-1967 406 592 UF A,C,D,E,G,J Heliport 34M019 Interstate Paper Co. (535') 314431 812542 13.95 01-17-1939 200 535 S,UB,LB,UF E,J 34M020 Interstate Paper Co. (453') 314438 812457 9.78 02-09-1939 140 453 S,UB,LB,UF E,J 34M021 Interstate Paper Co. (445') 314442 812434 13.84 02-09-1939 145 445 S,UB,LB,UF E,J 34M043 Union Camp Paper Corp. 314333 812247 12 372 34M049 Riceboro Presbyterian Church 314412 812603 18.96 03-30-1965 447 700 UF 34M050 Kearsey, E.E. 314340 812529 19 08-16-1966 462 705 UF E,J 34M051 Interstate Paper Co., Rust 314438 812425 12 10- -1966 427 810 UF 34M052 Interstate Paper Co., Rust 314435 812439 13 12- -1966 418 810 UF 34M053 Interstate Paper Co., Rust 314428 812453 12 03-28-1967 438 788 UF E,J 34M054 USGS'IW02 314343 812519 19 01-27-1967 467 802 UF E 34M056 Cooper, E.B. 314451 812757 20 09-01-1966 463 660 UF 34M057 Interstate Paper Co. 314439 812425 10 08-18-1966 189 606 S,UB,LB,UF E,J 34M075 Standard Oil, 1-95 & U.S. 1 313908 812341 10 09-20-1971 428 604 UF E,J 34M083 Humble/James, WM 01 314324 812513 17 03-19-1958 0 750 1H A,E,G - 34M084 Humble/Minson, R 01 314240 812726 19 10-19-1957 0 750 1H A,D,E,G 34M085 Humble/Union Bag 010 314241 812241 19 10-22-1957 0 785 1H A,D,E,G 34M086 Humble/Lambert 01 314132 812433 15 10-18-1957 0 800 1H A,D,E,G 34M087 Humble/Union Bag 058 314000 812617 22 02-09-1958 0 775 1H A,D,E,G 34M088 Humble/Barton 01 314408 812822 14 02-10-1958 0 755 1H A,D,E,G 34M089 Bruce, Bill 314426 812616 16 1939 196 310 S,UB C,E,J 34N029 Union Camp Paper Corp. 314913 812611 21 06-13-1961 80 304 S,UB E,J 34N088 Midway, Ga. 314757 812602 11 04-01-1966 400 662 UF E 34N089 USGS'IWOl 315214 812353 17 1967 410 789 UF E,J 34N091 Young, J. 314829 812917 21 12-08-1968 400 600 UF 34N094 Humble/Union Bag 012 314624 812244 17 10-24-1957 0 749 1H A,D,E,G 34N095 Humble/Union Bag 043 314731 812813 15 01-04-1958 0 750 1H A,D,E,G 34N096 Humble/Union Bag 011 314528 812727 15 10-23-1957 0 720 1H A,D,E,G 34N097 Humble/Union Bag 038 314915 812607 17 12-12-1957 0 800 1H A,D,E,G 34P024 Gill, J.F. 315346 812531 18 1915 280 417 LB,UF E,J 35M027 Blount 314352 811533 4 1940 385 590 UF E,J 35M040 Jelks & Rogers 01 314114 812046 21 1953 163 4,264 LF E,G,J 35M041 Tippens, Sam J. 314419 811928 26 06-03-1971 407 614 UF E,J 35M043 Humble/Union Bag 103 314352 812210 7 09-26-1959 100 851 S,UB,LB,UF A,D,E,G 35M044 Humble/Reikes 01 314412 811901 16 12-21-1957 0 725 1H A,D,E,G 35M045 Humble/Stevens 01 314233 811655 9 10-02-1959 85 750 S,UB,LB,UF A,D,E,G 35N061 Humble/Union Bag 104 314530 811816 22 10-03-1959 0 750 1H A,D,E,G 35N062 Humble/Union Bag 013 314649 811812 30 10-25-1957 807 A,D,E,G 35N063 Humble/Union Bag 105 314531 812050 28 10-04-1959 0 750 TI'I A,D,E,G 35N068 Ashburn, T.N. (swim pond) 314844 812119 10 0 600 J 85 Appendix B.-Record of selected CO!)Struction infonnation -~I!d available geophysical logs for wells in the study area-Continued. ,,, .) . . ' [Aquifer: S, surficial; UB, upper Brunswick; LB, lower Brunswick; UF, Upper F1oridan; LF, Lower F1oridan; D, Dublin aquifer, TH, test hole only, no aquifer tapped. Type of geophysical logs available: ..A, time; B; collar;. C, caliper; D, driller's; E, electric; F; fluid resistivity; G, geologist; H, magnetiC; J, mitural gariuna; K, dipmeter; :j:.,, la,terallog; N, l)eutron pProsity; 0, microlaterallog; P, photo Video; S, acoustic velocity;T, te!llp(!r~tur\1; U, g~mma-gal11ll).~;Y; fluid velocity; :X,, core; .Z; other. ,.:., data not a'Vailable] .. Altitude Top of Bottom of ~ ,I ( of land open open Type of._ Well e surface Date well Interval Interval Aquifer available ' no. Well name Latitude LOI)Qitude (ft) constructed (ft) .; (ft) code logs Libert:~: Count:~:--Continued 36L001 36M004 36M013 36M018 36M020 Noble Foundation, St. Catherine (south end) Noble Foundation, St. Catherine (power house) Yellow Bluff Fishing Camp Caines, W.W. Noble Foundation, St. catherine (greenhouse)' 313627 314008 314236 314401 313905 Long Count:~: 31M003 31M004 31M007 31M008 31M025 31M029 31N005 32L001 32L002 32L003 32L018 32L019 32M001 32M002 32M003 32M005 32M006 32M009 32M010 32M011 32M012 32M013 33L001 33L002 33L003 33M001 33M002 33M004 33MOO~ 33M006 33M010 Humble/Altam. Land Cq. 03 HumblejAitam. Land Co. 04 HumblejJ.E. Par~er, n\k-01 Humble/Savannah Riv:er, Lum Corp., 01 Humble/Altam. Land Co:, 05 Humble/Savannah River, Lum Corp., 02 Humble/Parker, 1.E., no. 2 Humble/Savannah Lum Corp., 03 Humble/Savannah River Lum Corp., 04 Humble/Savannah River Lum Corp., 05 Humble/Savannah River Lum Corp., 06 Humble/Union Bag 030 Ludowici, GA, 1 Ludowici, GA, z Humble/Altam. Land Co:, 01 Humble/Union Bag 023 Humble/Union B<'!g 025 Deloach, J.R. Humble/Union ~ag 02(/ Humble/Union Bag 027 Humble/Union Bag 028 Humble/Union Bag 029 :ffumblejUnion Bag 020 Humble/Union Bag 021 Humble/Union Bag 059 Humble/Union Bag 005 Humble/Union Bag 006 USGSTW03 Humble/Union Bag 014 Humble/Union Bag 022 Humble/Union Bag 060 314QP5 314203 314331 314021 314223 314233 314532 313426 313607 313308 313606 313454 314240 314232 313857 314235 314349 313859 314109 314133 313921 313734 313442 313724 313541 314100 314335 313854 313849 314003 313949 811040 810933 811423 811410 810934 814523 814642 815223 814747 814834 815058 815020 814109 814144 813847' 814343 813842 814441 814434 814400 813739 814146 814119 814023 814339 814141 814021 813411 813556 813535 813156 813424 813604 813134 813703 813405 6 13 1930 15 06-01-1938 7 09- '-1969 11 ,~1969 'r" 38 05-10~1959 41 05-11-1959 52 11-03-1959 34 04-26-1959 41 10-27-1959 ' 38 05-13-1959 44 11-07-1959 28 05-16-i959 21 05-17-1959 23 05-19-1959 42 05-22-1959 23 66 62 31 69 ! 64 46 82 68 31 27 22 57 23 22 21 61.24. 18 62 19 11-24-1957 06-01-1939 '1972 05-08-1959 11-13-19.51 11-17-1951 12- "1969 11-18-1957 11-19-1957 11-21-1957 11-22-19.57 11-10-1957 11-11-1957 02-17-1958 10-11-1957 10-12-1957 11-10-1967 11-03-i957 11-12-1957 02-19-1958- 1'73 352 '-310 420 349 0 0 0 ' 0 0 0 i63 b 0 0 0 0 495 493 0 o 0 510 0 0 0 0 0 0 0 0 0 538 0 0 0 ~ "' 309 S,UB,LB 'E .580 UP E 42.5 UB,LB,UF E,J 600 UF 501 UF c,E,J ,, 819 TH 800 TH 795 TH 822 TH ::c. A,E ~AEE :- v .~ '~' ;- A:,E 7n6o3 TH Til A,k c A,l=! '' :. .,.. t: c 764 S,UB;LB,UF A,E,I(G 799 TH A,E (':. '. 812 TH A,E ih;~ 830 TH A;E '817 Tii: A,~ 825 TH 579 tJF 635 UF 825 TH 840 TH 843 TH 610 UF 825 TH 825 TH 775 TH 775 TH 800 Til 825 TH 795 TH 784 TH 755 TH 870 UF 755 TH 800 TH 1,363 TH A,E D,G A,E,D,(] A,E,D,G A,E,D,Q A,E,D,G A,E,D,G A,E,D,G, A,E,D,G E,G E,G E,G A,E,D,G A,E,D,G A,E,D,G A,E,D,G A,E,D,G 86 Appendix B.-Record of selected construction information and available geophysical logs forwelfs in the study area-Continued. [Aquifer: S, surficial; UB, upper Brunswick; LB, lower Brunswick; UP, Upper Floridan; LF, Lower Floridan; D, Dublin aquifer; TH, test hole only, no aquifer tapped. Type of geophysical logs available: A, time; B, collar; C, caliper; D, driller's; E, electric; F, fluid resistivity; G, geologist; H, magnetic; J, natural gamma; K, dipmeter; L, lateral log; N, neutron porosity; 0, micro-lateral log; P, photo video; S, acoustic velocity; T, temperature; U, gamma-gamma; V, fluid velocity; X, core; Z, other. -,data not available] Well no. Well name Latitude Longitude Altitude of land surface (ft) Date well constructed Top of open interval (ft) Bottom of open interval (ft) Aquifer code Type of available Jogs Mcintosh County 33K009 33K012 33K016 33K019 33K020 33K021 33K022 33K023 33K024 33K025 33K026 33K027 33L010 33L027 33L072 34J027 34J028 34J046 34J047 34K008 34K012 34K073 34K079 34K080 34K081 34K082 34K083 34K084 34K085 34K086 34K087 34K091 34K092 34K095 34K100 34L027 34L048 34L059 34L060 34L061 34L066 34L070 34L071 Eastside Fishing Club Davis,Edgar Terrell, Mrs. Phillip Goodrich, D. Humble/Ft. Barrington Humble/Union Bag 034 Humble/Union 13ag 054 Humble/Union Bag 033 Humble/Union Bag 032 Humble/Union Bag 035 Humble/Savannah River Lum Corp., 07 Gail, Sammy Union Camp Paper Corp. Davis, E. Humble/Union Bag 002 Darien, Ga. (1968) Ga. DNR Game & Fish Commission Pack, John Boone Seafood Co. Blackburn, George Middleton, C.T. Howard, P.J. Fisher, W. Pearling Ind. Shoe Factory Oquinn, C. Young, E.L. Poppell, T. Fischette, Mike Ga. DOT, I-95 Weigh Station Dykes, W.L. Newburn, Joe Carter Harper & Kimbrell Fisher, C.M. Humble/Union 13ag 037 Ware, G. Williams, W.E. and F.B. Warsaw Lumber Co. Union Camp Paper Corp. Standard Oil Co. Humble/Union 13ag 048 Union Camp Sapelo Forest Eelonia, Ga., 4/84 312814 312955 312659 312553 312850 312728 312849 312953 312920 312729 312501 312609 313219 313020 313723 312158 312102 312227 312156 312508 312805 312506 312244 312435 312439 312531 312709 312503 312817 312417 312350 312319 312303 312254 312718 313217 313054 313522 313531 313155 313620 313531 313031 813619 813610 813117 813001 813653 813352 813118 813303 813614 813004 813209 813414 813149 813544 813009 812530 812651 812539 812559 812911 812910 812816 812506 812730 812737 812925 812529 812348 812715 812231 812235 812251 812251 812443 812316 812527 812455 812937 812458 812648 812612 812457 812618 24 1950 2 11- -1959 12 12- -1957 12 08- -1972 13 10-05-1959 13 10-30-1957 12 01-27-1958 19 11-28-1957 41 11-26-1957 12 12-02-1957 17 09-22-1959 18 19 20 15 21 4.03 11-01-1981 1933 03-01-1968 10-05-1957 01- -1968 22 4 14 19 45 22 28 31 10 41 25 1958 8 6 7 7 20 15 7 22 15 27 20 17 25 15 1958 1970 12- -1957 1957 1959 1965 1964 1952 12- -1966 1967 10-01-1968 11-01-1968 06- -1970 06- -1970 1970 1970 06- -1973 12-08-1957 1955 1958 1925 1971 02- -1972 01-16-1958 04-28-1984 456 598 LB,UF E,J 458 660 LB,UF E,J 444 664 LB,UF E,J 590 720 UP 36 820 A,D,E,G 0 810 TH A,D,E,G 0 1,492 TH A,D,E,G 0 800 TH A,D,E,G 0 795 TH A,D,E,G 0 865 TH A,D,E,G 380 1,020 UB,LB,UF A,D,E,G 552 710 UF 382 532 UF E,J 465 700 UF 0 780 TH E,G 658 799 UF J,E 561 598 LB E,J 559 618 LB,UF E,J 683 806 UF E,J 642 764 UF E,J 446 700 LB,UF 643 780 UF 687 791 UF E,J 638 797 UF E,J 630 850 UF 604 740 UF E,J 612 765 UF 610 780 UP 453 604 LB,UF D,E,J,N 582 760 UF E,J 603 687 UF A,E,J 583 738 UF E,J 582 760 UF E,J 629 730 UF 0 925 TH E,G,A 301 641 UB,LB,UF E,J 495 575 UP E,J 172 472 S,UB,LB,UR E,J 426 760 UF 466 593 UF E,J 0 755 TH E,G 136 394 S,UB,LB C,E,J 618 634 UF C,E,J 87 Appendix B.-Record of selected construction inJonnation and .available geophysical logs for welis in the study area-Continued. [Aquifer: S, surficial; UB, upper Brunswick; LB, lower Brunswick; UF, Upper Floridan; LF, LOWer Floridan;. D, Dublin aquifer; TII, t~st holecirily, no aquifer tapped. Type of geophysical logs available: A, time; B, collar; C, caliper; D, driller's; E, electric; F, fluid resistivity; G, geologist; fl, magnetic; J, natural gamma; K, dipmeter; L, lateral log; N, neutron porosity; 0, micro-lateral log; P,photo video; S, acoustic velocitY;. T, temperat11,re; U, gamma-gamma; V, fluid velocity; X, core; Z, other. -,data not awilable] Well no. Wellriame Longitude Altitude of land surface (ft) Date well constructed Top of open Interval (ft) Bottom of open Interval (ft) Aquifer code Type of 11 available logs Mcintosh Count~-Continued 34M001 Stebbins, C.H. 34M070 King, Charles . 34M076 Proudfoot, G.F. .(home) 35K062 Sapelo Research Foundation Long Tabby 35K063 Sapelo Research Founqation AirStrip 35K064 Johnson, Benny 35K065 Sapelo Research Foundation Mainland 35K068 Pease Island Development 35K069 Gore, S. 35K071 Bolton, George 35L067 Holt,V. 35L068 Mitchell and l'!'eighbors 35L071 Proudfoot, H.S. 35L072 Stafford, TA. 35L078 Harris Neck, Gould L. 35L080 Julienton, Thorpe, H. 35L081 Julienton, Middle Road 35M013 US Fish and Wildlife Harris Neck 01 35M014 US Fish and Wildlife Harris Neck Airfield 35M015 US Fish and Wildlife Harris Neck Airfield 35M046 Humble/Union Bag 007 36K001 Reynolds, R.J. 36K004 US Fish and Wildlife Blackbeard Island 04 36L007 US Fish and Wildlife Blackbeard Island 05 36L008 US Fish and Wildlife Blackbeard Island 01 36L009 US Fish and Wildlife Blackbeard Island 02 36L010 US Fish and Wildlife Blackbeard Island 03 36L011 Sapelo Research Foundation (pond) 313814 313820 313749 312553 312456 312517 312717 312632 312840 312845 313325 313419 31~722 313309 313719 313336 313410 313823 313759 313806 313810 312611 312923 3132Q5 313135 313053 313020 313030 ~12;342 812903 812512 811656 811726 811609 812152 812209 &12053 812040 8121_4\? 81~926 811858 812204 811542 811806 811737 811542 811613 811625 812215 811421 811233 811205 811222 811223 811226 811402 14 12 12-02-1966 21 08- "1972 6 1967 6 1967 7 1967 4 1967 9 11 11 8 18 14 14 7 18 15 16.30 1965 09- ~197i 1982' 12-05-1966 07- -1969 08- 4970 02-19-l97d 19t2 1939 1942 20 . 01-23-1964 . 14 194i 17 10-14-1957 12 i960 12 03- -1935 7 1966 8 11-15~1934 10 12-29-1934 13 02-14-1935 8 1968 1'70 427 . 462 528 60 320 578 577 '570 486 436 485 442 '481 204 395 416 376 452 366 0 520 439 20 397: 408 431 273 471 S,UB,LB,UF C,E,Jhu~; 660 UF E,J :;: 700 UF 7i5 UF E,J 364 S,UB,LB E,J 372 UB,LB E,J 726 UF E,J 766 UF 703 UF 638 LB,UF 586 LB,UF, 640 UF 601 664 u3,u:F UF .... 359 S,UB,LB 582 LB,UF 699 LB,UF 553 LB,UF E,l E,J .,C,E,J E,J E,.J .E.J C,E,J C,E,J C,E,J 621 UF 557 LB,UF D,C,E,'J .. E,i 725 TH 780 UF 709 LB,UF 301 S,UB,LB A,:b,E,G E,J E,J,G,D .. ! . ~ . E,J 520 LB,UF E,J,E,J. 533 UF E,J 617 UF D,E,J 339 UB,LB E,J 88 Appendix B.-Record of selected construction information and available geophysical logs for wells in the study area-Continued. [Aquifer. S, surficial; UB, upper Brunswick; LB, lower Brunswick; UF, Upper Floridan; LF, Lower Floridan; D, Dublin aquifer; TH, test hole only, no aquifer tapped. Type of geophysical logs available: A, time; B, collar; C, caliper; D, driller's; E, electric; F, fluid resistivity; G, geologist; H, magnetic; J, natural gamma; K, dipmeter; L, lateral log; N, neutron porosity; 0, micro-lateral log; P, photo video; S, acoustic velocity; T, temperature; U, gamma-gamma; V, fluid velocity; X, core; Z, other. -,data not available] Well no. Well name Latitude Longitude Altitude of land surface (ft) Date well constructed Top of open Interval (ft) Bottom of open Interval (ft) Aquifer code Type of available logs Screven County 31V007 Collins, Leslie W. 31V008 Smith, Bobby 31V012 Lee, T.W. 31V014 Newton, Walton 31V017 Johnston, Floyd 31V018 Wommack, Lincoln 31W002 Brabb, Albert 31W014 Doyle, B.H. 31X001 Continental Can 32U001 Robinson, Willett 32U004 Anderson, B.H. 32U005 Hunter, William F. 32U016 Wyant, W.W. 32U017 King Finishing Mfg. 01 32U019 King Finishing Mfg. 03 32V001 Pye, O.J., Jr. 32V003 Evans, Hezzie 32V007 Rowell,H.G. 32V012 Burke, David H. 32V013 Arrnett School 32V031 Waters, G.C., Jr. 32V035 Peavy, Elliot 32V039 Evans, Mrs. C. ~ 32W001 Basemore, C 32W002 LA. Thigpen Construction Co. 32W006 Waters, Mrs. A.F. 32W065 Brannen, J.R 32W070 Sylvania, Ga., 04 32X035 Griffin, Marion 33U021 Newington, Ga. (1966) 33U023 Oliver, Ga. 02 (1968) 33U024 Screven Oil Test 1933-34 33V005 Evans, Mrs. J.J. 33V01i Boykins, Vernon L. 33V020 Hunters, W.H. 33V021 Lee, M.P. 33W001 Weaver, J.K. 33X013 Screven County Millhaven School 33X022 Carter, Saddie 34U001 McCain-Pryor 1 34V004 Boddiford, B.R 323954 323847 323924 323828 323945 323911 324958 325011 325335 323715 323542 323514 323435 323608 323604 324037 324031 323813 323824 323923 324250 323749 324238 324629 324624 324855 325055 324503 325339 323525 323116 323009 323856 324234 323747 324118 324756 325538 325713 323506 324145 814837 814625 814650 814716 814945 814952 814506 814602 814530 814024 814303 813848 814255 814423 814411 814128 814046 814153 814316 814202 813735 813900 813730 814225 813942 814001 813806 813916 814000 813011 813204 813254 813346 813020 813216 813453 813345 813529 813454 812538 812935 155 1960 192 1959 231 05-01-1962 167 10-01-1958 129 1963 114 1963 291 10-01-1958 312 1956 204 1967 242 07-01-1961 170 1962 212 09-01-1962 100 155 1965 150 09-10-1971 211 04-01-1959 209 12-01-1961 223 202 1955 232 1954 253 1959 214 1966 245 1962 244 06- -1961 235 11-01-1960 122 12-01-1959 179 1959 187 165 11-12-1969 150 114 07-01-1968 75 1934 215 06- -1959 148 06-01-1958 162 1959 225 07-01-1963 132 1942 137 1954 148 1962 125 06-13-1963 163 12- -1962 80 177 198 154 160 50 221 220 168 254 195 286 90 1,266 1,253 147 168 260 208 185 210 210 189 133 122 100 227 85 186 242 215 200 140 203 189 82 200 150 0 148 147 UF 207 UF 230 UF 167 UF 249 UF 105 UF 245 UF 360 UF 175 UF 275 UF 225 UF 290 UF 255 UF 1,326 D 1,323 D 255 UF 187 UF 265 UF 220 UF 301 UF 270 UF 250 UF 268 UF 210 UF 202 UF 186 UF 202 UF 257 UF 100 UF 245 UF 322 UF 608 UF 260 UF 187 UF 236 UF 225 UF 84 UF 300 UF 210 UF 2,677 TH 210 UF D,E,J D,E,J C,E,J G,D 89 Appendix B.-Record of selected construct,ion info~ation and available geophysical logs for wells in the study area--Continued. [Aquifer: S, surficial; UB, upper ~runswic~;, LB, Io~er Brun~ck; UF, Upper Floridan; LF, Lower Fiondini.; D, Dublin aquifer; 'IH, tsi hole dnly, no aquifer tapped. Type of geophysical logs available: A, time; B, collar; C, caliper; D; driller's; E, electric; F, fluid resistivity; G, geologist; H, magnetic; J, natural gamma; ~ dipmeter; L, lateral log; N, neutron porosity; 0, micro-lateral log; P, photo video; S, acoustic velocity; T, te111pir~tllrt;; U~,gamma-ga111l11a; V, fluid velocity; X, core; Z,.other. ...:.; data not available] Well no. Well name Latitude Lor)gi!!,Jde Altitude of land surface (fl) Date well conslructed Top of open Interval (fl) Bottom of open Interval (fl) Aquifer code Type of available logs Wayne County 29K002 29L005 29M001 29M002 29M004 29N003 30K004 30K016 30K017 30K018 30K019 30L003 30L009 30L011 30L012 30L013 30L014 30L016 30L017 30M003 30M004 30M005 30M007 30M011 30M012 30M013 30N001 30N002 31K001 31K002 31K003 31L001 31L002 31L003 31L004 31L005 31L009 31L010 31L011 Thomas, Lindsey G. Lake Lindsey Grace Odum, Ga. State of Georgia Correction Department Oquinn, R Anderson, F. Brunswick Pulp and Paper Mears 1 Scott and Mean 1~C Humble/Bennett 01 Humble/Davis 01 Humble/Rodgers 01 Johnson, H. Jesup Industrial Park Aspinwall, C. Parkerson, B.D. Jesup, Georgia Industrial Park Jones, Dr. Charles Humble/Jones 01 Humble/Green 01 Harrison, R Wayne County-Oglethorpe Landing Waters, L.L. Miles,F.C. Ganus, L. Forbes, Thomas Miles Brothers Stockyard Wayne County-Mitchell Landing Anderson, L. Brunswick Peninsular Corporation Ga. DNR Wayne 02 (test hole) H-3 Brunswick Pulp and Paper J. Mears 2 Humble/Kicklighter 01 Humble/Grantham 01 Humble/Lee Williamson 01 Humble Union Bag no. 64 1 Humble/Hopkin Brothers 05 Humble/Union Bag 106 Humble/Union Bag 069 312845 313402 313950 314026 314451 314824 312719; 312718 312958 312533 312858 313701 313457 313041 313618 313457 313423 313700 313341 313935 314316 313829 314250 313756 314037 313941 314659 314512 312330 312712 312320 313102 313651 313630 313518 313317 313119 313128 313009 820146 820228 820143 820714 820023 820304 815253 815253 815847 815901 815402 815434 815447 815944 815703 815448 815301 815345 815851 815459 815409 815333 815745 815621 815936 815446 815853 815802 814831 815131 814505 815220 814759 814948 814646 814652 814622 814912 815015 118 03-23-1955 110 1975 160 1955 169 09- -1968 162 1963 . 178 1958 55 02-26-1974 61 108 88 50 105.77 106 .123 152 105 03-26-1975 04-14-1959 05-03-1959 06-18-1959 08-19-1963 09-01-1967 10-01-1970 12-01-1970 1967 105 .05-01-1983 82 10-09-1959 113 04-24-1959 112 06-01-1962 100 08-01-1963 105 11- -1968 107 06-01-1967 153 06- -1967 150 .05-21-1974 112 03-18-1974 65 1963 166 06-01-1967 55 12-17-1944 55 05-03-1974 55 55 03-11-1975 45 06-12-1959 63 04-27-1958 37 05-24-1959 61 03-06-1958 72 06-06-1959 59 10-13-1959 63 04-01-1958 557 645 52.5 450. 620 550 662 0 0 0 0 472 532 594' 614 650 584 0 0 503 505 497 540 519 603 582 533 591 0 0 587 0 0 0 0 0 0 0 750 UB,LB,UF D 800 UF 725 UF 750 UF ,-':> ; -_; 710 660 770 4,500 830 774 905 594 651 732 700 696 UF UF UF 'IH 'IH TH 'IH UB,LB,UF LB,UF UF UF UF C,E,F,J, N,T,U G E,G,A E,G,A .E,G,A EJ C,E;f 720 UF 850 'IH 920 TH 620 LB,UF 638 UF A,E;D,G,' A,~,D,G E 655 UF 700 UF 640 UF 720 UF E,J 696 UF E,J 660 UF E 724 UF E,J 4,626 TH G 686 'IH E,i 431 J 691 UF 799 'IH 800 TH 775 TH 855 'IH 852 TH 857 TII 837 TII A,E,n;G A,E_ .A:,E,D,G E A,E,D,G A,E,D,G A,E,D,G 90 Appendix B.-Record of selected construction information and available geophysical logs for wells in the study area-Continued. [Aquifer: S, surficial; UB, upper Brunswick; LB, lower Brunswick; UF, Upper Floridan; LF, Lower Floridan; D, Dublin aquifer; lli, test hole only, no aquifer tapped. Type of geophysical logs available: A, time; B, collar; C, caliper; D, driller's; E, electric; F, fluid resistivity; G, geologist; H, magnetic; J, natural gamma; K, dipmeter; L, lateral log; N, neutron porosity; 0, micro-lateral log; P, photo video; S, acoustic velocity; T, temperature; U, gamma-gamma; V, fluid velocity; X, core; Z, other. -,data not available] Well no. Well name Latitude Longitude Altitude of land surface (ft) Date well constructed Top of open interval (ft) Bottom of open Interval (ft) Aquifer code Type of available logs Wayne County--Continued 31M006 31M009 31M010 31M011 31M012 31M013 31M014 31M015 31M016 31M018 31M019 31M020 31M021 31M022 31M024 31M030 31M031 31M032 31M033 31M034 32K007 32K014 32K015 32K016 32K017 32L004 32L005 Smith, Ned ITT Rayonier D 01 ITT Rayonier D 02 ITT Rayonier D 03 ITT Rayonier D 04 ITT Rayonier D 05 ITT Rayonier D 06 ITT Rayonier D 07 ITT Rayonier D 08 ITT Rayonier S 02 ITT Rayonier S 01 ITT Rayonier S 04 ITT Rayonier S 03 Connie-Kicklighter Adams, C.C. ITT Rayonier D 09 ITT Rayonier D 10 ITT Rayonier D 11 Williams, D. Boykin, E. Brunswick Pulp and Paper Mt. Pleasant Brunswick Pulp and Paper Land Co. Humble/Union Bag 066 Humble/Union Bag 063 Humble/Hopkins Bros. 07 Martin, M. and L. Hopkins no. 2 314016 313942 313934 313924 313911 313859 313911 313924 313931 313937 313936 313930 313927 313817 313850 313830 313806 313749 313958 313743 312549 312555 312425 312916 312948 313018 313252 32L006 Hopkins, C.D., no. 1 (1976) 313215 32L007 32L009 321..010 321..011 321..013 321..014 321..015 321..016 321..017 Humble/Mary Anderson 01 Humble/Hopkins Bros. 06 Humble/Hopkins Bros. 09 Humble/Union Bag 067 Humble/Union Bag 088 Union Camp Paper 01 Gardi 1W 1 Gardi1W2 Gardi1W3 313342 313109 313125 313255 313215 313112 313252 313252 313252 815112 815039 815023 815010 815001 814959 815020 815033 815051 815040 815036 815035 815031 815106 815108 814959 814939 814917 815207 815158 814032 814039 814200 814148 814043 814119 814336 814357 814457 814157 814455 814236 814112 814102 814336 814336 814336 98 100 85 8850 83 75 81 95 100 92 96 96 96 92 95 78.10 64.10 63.20 97 84 55 04-01-1970 04-01-1952 09-03-1952 10- -1952 10-20-1952 06- -1956 07- -1956 06-01-1956 1956 06-01-1963 06-01-1963 02-03-1964 1964 1973 02- -1971 05-01-1971 07- -1971 09- -1971 12- -1970 02- -1974 01- -1957 57 09-01-1982 53 03-21-1958 47 03-04-1958 49 06-14-1959 40 03- -1971 74 12-08-1977 75 04-30-1976 46 06-10-1959 54 06-07-1959 68 10-12-1959 67 04-26-1958 47 06-08-1959 49 11-22-1960 74 04-20-1983 74 04-26-1983 74 05-03-1983 560 480 486 460 488 500 493 478 480 163 180 180 172 540 560 500 515 510 557 455 605 600 0 0 0 546 1,364 0 0 0 0 0 0 545 320 200 670 UF 1,010 UF 1,010 UF 998 UF 1,010 UF 1,000 UF 1,000 UF 1,000 UF 1,000 UF 183 s 204 s 200 s 191 s 691 UF 650 UF 855 UF 850 UF 937 UF 708 UF 580 UF 618 UF 700 UF 927 lli 835 lli 756 lli 700 UF 2,070 LF 3,198 lli F,G 812 lli 792 lli 860 lli 1,601 lli 807 TH lli 750 UF 340 VB 215 s D,G D D D E,J E,G,A E,G,A E,G,A A,C,D,E, F,G,H,I,J, K,M,N,T,U T,N,E,J, u,c A,E A,E A,E A,E A,E G E,J 91 Appendix C--Ground-water-level, chloride, and specific conductance data from selected wells in the. coastal area [Aquifer: S, surficial; UB, upper Brunswick; LB, lower Brunswick; t.JF, Upper Floridan; LF, Lo'werFloridan. Water level: +,above land surface;-, below land surface; Specific conductance, in microsiemans per centimeter at 25C; --,no data available] Well no. Aquifer Altitude (ft) Water level (ft) Brantley County 28H004 UF 125 29H002 UF 130 30H003 UF 62 30H005 UF 65 31H005 UF 53 31J001 s 49 Bryan County 34P012 34P014 34R039 35N021 35N059 35P057 35P078 35P099 35P100 36N002 36P091 36P093. UB,LB,UF 14 LB,UF 18 UF 76 S,UB,LB,UF 17 UB;LB,UF 18 LB,Uf 20 UF 10 UF 19 UP 11 S,UB,LB 11 UF 11 UF' 12 Bulloch County 30S001 UF 233 30U002 UF 297 31S007 UF 180 31S008 UP 156 31T007 UF 243 31T010 UF 227 31T011 UP 202 31T023 UF 170 32T003 UF 155 -80.25 -83.80 -2555 -25.30 -14.95 -16.60 -20.57 -19.82 -65.20 -27.68 -27.80 -27.20 -19.65 -31.52 -27.40. -18.29 -31.47, -32.06 -155.05 -169.40 -131.29 -114.08 -158.46 -137.60 -129.75 -71.92 -68.73 Date measured Water quality Chloride Specific Date (mg/L) conductance sampled "' liO ,', 05-17-85 05-17~85 05-17-85 05-20-85 -- 05-17-85 05-1.3"85 05-13~85 05-13-85 05-14-85 . 05-13-85 05-13-85 05-13-85 05-13-85 05-13-85 05-13,85 05-13-85 05-13-85 05-13-85 -- 5.7 289 11-02-84 4.3 210 .1101-84 4.3 270 11-02-84 12 262 11-02-84 05-15-85 05-15-85 05-16-85 05-16-85 05-16-85 05-16-85 05-16-85 05-16-85 05-16-85 92 Appendix C.--Ground-water-level, chloride, and specific conductance data from selected wells in the coastal area--Continued. [Aquifer: S, surficial; UB, upper Brunswick; LB, lower Brunswick; UF, Upper Floridan; LF, Lower Floridan. Water level: +, above land surface; -, below land surface; Specific conductance, in microsiemans per centimeter at 25C; --,no data available] Well no. Aquifer Altitude (ft) Water level (ft) Bulloch County--Continued. 32T013 32T015 UF 155 S,UB,UF 185 Camden County 30F004 31E001 31F017 31F022 32E004 32E033 32F008 32G004 32G007 32G015 33D004 33D006 33D022 33D048 33D049 33D050 33D058 33D061 33D063 33E002 33E004 33E007 33E009 33E023 33E027 33F001 33F002 UF 65 LB,UF 22 UF 15 UF 20 LB 26 LB,UF 18.25 UF 9 UF 15 LB,UF 16 UF 20.83 UB,LB,UF 10 UF 9 UF 10 UF 13 UF,LF 15 UF,LF 15 UF 13 UF 15 UF 15 S,UB 22 S,UB,LB,UF 16 UF 18 S,UB,LB,UF 12 LB,UF 16 UF 10 LB,UF 9 LB,UF 10 -97.07 -107.93 -23.02 +18.10 +21.30 +21.00 +13.30 +17.70 +33.50 +19.80 +22.20 +16.50 -5.37 -70.07 -25.37 -25.50 -89.02 +18.00 +2.70 +25.00 +23.00 +26.00 +26.35 Date measured Water quality Chloride Specific Date (mg/L) conductance sampled 05-16-85 05-16-85 05-15-85 05-15-85 05-15-85 05-15-85 05-15-85 05-15-85 05-15-85 05-15-85 05-15-85 05-15-85 05-15-85 05-14-85 05-14-85 05-14-85 5-14-85 05-15-85 05-15-85 05-15-85 05-15-85 05-15-85 05-21-85 27 519 11-02-84 19 486 11-02-84 31 538 11-02-84 37 700 11-02-84 48 627 11-02-84 14 292 11-03-84 42 700 11-02-84 37 690 11-02-84 30 685 11-02-84 77 830 11-02-84 36 685 11-02-84 38 708 11-02-84 37 654 11-21-84 38 633 11-02-84 42 638 11-02-84 32 467 11-02-84 46 626 11-01-84 93 Appendix C.--Ground-watet-ley'el, :chloride, and specific- conductance data from .selected wells iri the coastru area--Continued. [Aquifer: S, s1J.rf!cial; UB, upper BrunsWick; LB, lower Btlliiswick; UF, Upper Floridan; LF, Lower Floridan. W ate~)evel: +, above land surface; -, below land surface; S_P,e~ific ~o,:t;t<;i~ctance, in mi~rQsiema:ns per centimeter at 25C; --,no dataavailable] Well .no. Aquifer Altitude (ft) Water level (ft) Camden County--Continued. 33E027 33F001 33F002 33F003 33F004 33F017 33G005 33G006 34E002 34E003 34E009 34E010 UF 10 LB,l.JP 9 .. LB,UF 10 UF 20 UF 12 UF 12 UF 7 UB,LB,UF 12 UF 17 UF 14 UF 17 UF 10 Charlton CountY 27E003 UF 27E004 UF 28D001 UF 29F001 UF 30E002 UB 30E007 UF Chatham County 117 116 128 145 12 91 i;' 35P085 35P091 35P094 350043 35R018 35R025 36P087 36Pd9o LB,UF S,UB,UF s UF S,UB,UF UF UF UF 15.55 10. 18.67 11.22 38 20 18.H 20 +26.00 !; .. +26.35 +13.20 +19.75 +26.76 +28.00 +25.70 +16.40 +12.50 +4.60 +13.60 -71.70 -68.40 -84.15 -94.40 -51.37 -40.58 -27.99 -10.87, -38.87 -46.62 -45.10 -47.70 -70.90 Date measured Water quality Chloride Specific . . Datb: (mg/L) conductance sampled 05-15~85' 05-21-85 05-21-85 05-21-85 05-21-85 05-15-85 .. 05-15-85 05-13-85 05-13-85' 05-13-85 05-13-85 32 467 46 626 41 528' 41 412 41. 675 38 . 275 -- 41' 665 11-02-84 11-01-84 -- ...... ')' 11\q~t8~ 11-03-84. 11.:oi~8m s~lected. w~lls inthe eoastal area-,-Contin:ued. [Aquifer:. ~. &~ficial; UB, 1,1pper Brunswick; LB, lower Brunswick; tJF, Upper Floridan; LF, .J...o~~r Flqridan. ,Wat~r lt 200 't - - - 300 40 0' 500 60 O't - - SURFICIAL r-------- AQUIFER ----- ~ - -- > 11 y- --,_- ~ WWER BRUNSWICK ( AQUIFER J u '-.._ _( --)- -- !IAOIAT1 '"CIII!A$1 1- IIUI&~'f -INCota~aEa 70Of- u .!""S' UPPER FLORIDAN AQUIFER L-- 60 O't- !:: ~ 900't--?- "z ' t- -?- -?- -?- -?- -?- -?- -1- -1- -?- -?- - "IS' "' '-- 1000 f-- ""-Q'' L S1 1100 I- L-- I 120 0''-- 100' LAND SURFACE 100' 200' 300' 400' BRUNSWICK PULP AND PAPER CO.,GLYNN COUNTY Land surface altitude is 7 feet ., ..0 "'::1: "' ~ 0 "0 ' "'::1: N ::1: ""'' ""' BRUNSWJCK AQUIFER BRUSSWICK AQUIFER 700' 800' aoo 1100' 1200' UPPER FWRIDAN AQUif'ER WWER L FWRIDAN AQUIFER Prepared in cooperation with the DEPARTMENT OF THE INTERIOR U.S. GEOLOGfCAL SURVEY COFFIN PARK, GLYNN COUNTY Land surface altitude is 7 feet 100' r ......" ::1: ."' ...::1: ....::1: ."".'' X " " " "' LAND SURF ACE 'V \-] : II n- J >- .,-, N u ~ y ' l SURFICIAL l z"' "~!' :: 100' I- 1---- 200 300, f--UPPER 400 000' I - c1000 100'I- :w 000 'I-~ 1 :.;z ) _______ - -- r- I- ':r--- I-' 11 t---f- 1--( ~ _ \5 ,; AQUif.R F-) =-~ -<.,= ? ; t~ 1---)- l= (BRUNSWICK _( '{ AQUIFER WWER ~ ~ BRUNSWICK AQUIFER .7. ,_ ~ ut ;;!_ ""' ;1' " :t fCAl.S CIIAIIIO "' I-- ICAU CII.UIIIE c.::- I~ u ("' ._"(- !i;" :;: )_ ~ ) """"gz'' i n~" 1-- I~ UPPER '~5!- FLORIDAN :-rfl r;..~'. AQUIFER ? ' .!""S.' !z:: ""2'. 1101,( OIJIWIII!II NCIIIIAIIil 000' I - - L 1000 ' 1100 I- B '-- '--- -llllfiYIT1' wu::IUAIII ,..... ...-.. .,_ -- sF-- r"' LOWER '"" - R.I.OI.t.TIC)H IIICIIf A811!8 FLORIDAN AQUIFER ~ ~#~:-:~.--- --:; ~ \~:.,;;.. ~ l ' I ) . ..2 I [ '< !-"-~ <.'"'.~:.;.;_..., .,.,,~ c" "1S' t: I-- 1- ~~ ~ ~--- ' :; i!i ... L- :S:z -~~ Il"L" ~ UPPER ~ FLORIDAN AQUifER 300' 400 'f-500 'f-- -- 1--'! . ~ ~ ,J ).< --- '--- ) > ."".' 4$00' . " 500 ' eoo ---- ~-=cs. <, 700'I- eoo'I- 900 't- ;,:_ l ~-- 00 ' 'I-- .-:::j.~.~ - ICA~I Ct!AifCII! ~ ) WWER F ~ ? ?' FLORIDAN AQUit""ER ,f?' 1000 I-. ~- CO.CIII'fllllltIO!f /1,000 ..,~ 1100 1 r "iJc\IIA~III IIU.TkiiTY .(: AI lt,r,Ctfo'tl()lollloiCIIEAIII - IOI;CIII!.AIEI- -~ 1--- 1 L- - IIII.TNITY II>O,.OIITY llol~lll lloiCIIEAIEI 1200 ''-- z """gz'' ~ ' 7 ',. ..0: ~ Q "51 s -: ~ - OttUil'l' IIIICIIUIIU 1000' 1100' 1200' HUTCHINSON ISLAND, CHATHAM COUNTY ... ..~ 0 ... Land surface altitude is 6 feet ~ 0 " ~ " WWER AQUIFER FORT PULASKI, CHATHAM COUNTY Land surface altitude is 8 feet 0 g 100' "0.",'' 0 ""'' 1500' 1800' oaurn.oAH 140LI" OIA..IIT11 wn;:III'Ait: INCIIIAII:I BULLETIN 113 PLATE 2 HOPEULIKIT, BULLOCK COUNTY 100' Land surface altitude is 205 feet .. "0' g 0 , ,.. " GOO' BULLOCH SOUTH, BULLOCH COUNTY Land surface altitude is 120 feel 100' N 0 a0 : N " .."0 a0 : "' 100' 200' 300' UPPER AQUIFER BRUNSWICK AQUIFER 800' 700' !"''""' 800' ' 000' EXPLANATION ~ WATER LEVEL-Values listed in table 1 UTHOLOGY CJ. Sand f Clay ~. Silt ~ lnterlaminated silt and clay ~ Limestone ~ Dolomite 0 Particulate phosphate 0 Ubiquitous phosphate B Glauconite B Fossils ~ Chert B Lignite HYDROLOGIC UNITS D Aquifer ~ Permeable zone U =Upper water-bearing zone D Confining unit L= Lower water-bearing zone B =Brackish water wne !=Zone 1 of McCollum and Counts (1964) WELL CONSTRUCTION 2=Zone 2 of McCollum and Counts (1964) I I Openhole I I Screen I j Casing J f GEOPHYSICAL LOGS--C. Caliper; J, Natural gamma; SP, Spontaneous potential; U, Gamma-gamma; M, Focused resistjvity; S, Acoustic velocity; F, Fluid resistivity; N, Neutron; E, Electric LITHOLOGIC AND GEOPHYSICAL PROPERTIES OF SEDIMENTS, WELL-CONSTRUCTION CHARACTERISTICS, AND HEAD RELATIONS AT NESTED-WELL SITES IN THE COASTAL AREA GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION GEORGIA GEOLOGIC SURVEY Prepared m cooperation wtth lhe DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY SYSTEM GULF COAST STAGE Post-Glacial FLORIDA Panhandle Peninsula GEORGIA UndtffeJenttated depostts Undtfferentiated deposits SOUTH CAROLINA GEORGIA Georgia Geologic Survey Nomenclature [P.F. GGS, written cummun., Undifferentiated deposits Undifferentiated deposits Sat ilia Formation GEOLOGIC UNIT THIS STUDY THICKNESS (FT) BULLETIN 113 PLATE3 HYDROLOGIC UNIT Wtsconsin to Pre-!limo.an Terrace depOSitS Terrace deposits Terrace depostts Undifferent iated alluvial depos its Caloosa hatchee f---------t---+--------+-------1 Formatton and cqu1valents z[lJ el Foleyan Citronelle 0 ~ Formation Waccamaw Formation Cypress head Formation Raysor Formation Miccosukee Formation Post-Miocene unit 60. 440 Surficial aqu ifer Clovellian Ducklakian Napoleonvillian deposits Hawthorn Formatton Hawthorn Formatton Hawthorn Formation Anahuacian Tampa Limestone Edtsto FormatiOn Miocene unit A Miocene untt B Mtocene untt C 20. 140 10-230 2 - 175 Confining unit Upper Brunswick aquifer Lower Brunswtck aquifer Chickasawhayan (restncted) z[lJ B 0 0 ~ Ytcksburg.an Limestone ""0' ~ ~ Jacksonian Ocala Limestone a- "" ~- "0 s " "' ."9 ~ "E ' c"e" k "E ' ~ '0 6 ;::> Paleocene unit 230- 390 300-1000 270. 425 ~ :; <:T """c"0' 0 ji; g~ _ ;j 1Upper water- beanng zone (Brunswick area) 1Lower waLer- beanng zone (Brunswick a1ea) Confining unit 1 Rrackish water zone (Brunsw1ck Hrca} 2 Fernandma lii permeable ~ zone ......j 1Gregg and Zimmerman (19174). 2Krause and Randolph (1989). Modified from Miller (19&: GENERALIZED CORRELATION OF GEOLOGIC AND HYDROLOGIC UNITS OF TERTIARY AND QUATERNARY AGE IN GEORGIA AND ADJACENT PARTS OF FLORIDA AND SOUTH CAROLINA GEORGIA D EPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DlVTSION GEORGIA GEOLOGIC SU RVEY A WEST FEET 200 100 SEA LEVEL -100 -200 -300 -400' ~=~~ "'"~ .oz-' !.i. If) .... z~Q o- xu";.' Pos'~'-1\fro CNJ;; ~ UNIT AND ~"'_",' ~ ~ _, ;""l;'' ~ ~ ~ ""_,' _, ,._ ~ ~~ ".'"".',' t;!-[2 l.i.l ::l ;z -g ,~ ., ~ ,E., "' C,~ .,l "~' "'"'''' 0 ' ;Cgl ~ w~ -...... ,~.,________,._ Ci ,., ,., w ,0",.._,' ~ 0",,.._,' -,._ ~ ":C:;;'iC,.,"._,I' s"' C,,.._,l MIOCENE A.~R UNIT A UNDIFFERE~T AT ED r------~...._ 1--------1---- MIOCENE UNJT B CMA.RKER DMARKER MIOCENE UNIT ~ oLIGOCENE c UNIT --------------- ---------? ~ - ...._ A v ? / cf.~ll \-Ai( ~v o\ c;C c"-~"' v ll NIT ? 1- ....-::: ? --v B ---- " \)~\1 ~1 v / 1-- ------ UPPER EOCENE VNIT -500 -600 TO 820 n TO 1 ~ 048 ft TD 1,000 n TD 981 fl TO 1,574 ft - 700 "'" '-1 " z 0 6 .""''I'.'', ;;:e",n_' ",'-"_-'1"o--''' "o'i";;' "'"z' A' EA,.S, T .C~ "".,''i 0 N ,C~ .,i 8 C~ ,.,i A~R B~R ~ c MARKER DMARKER 1- TO 1 ,..~39 f'l: Pr epared in cooperation with the DEPARTM ENT OF THE INTERIOR U.S. GEO LOGICAL SURVEY BULLENTlN 113 PLATE4 FEET 200 100 SEA LEVEL -100 -200 -300 ,"; E " 0 FEET NORTHWEST 5 N 200 8z.".', ""I'' I I l / ~~ 100 SEA LEVEL -100 -200 Pos1fviioc,. .c / ~ -300 ~ i_i,l ~ "M ' "M ' -0 0 -..', - :..l. g N ,".,' M "",~ .', ~ :; "..~ ..'., :"",.t', g "M..'. VN11 AND 1\1Ic CENE UNIT A UNDIFFERE ~TlATEO ~ ~ ----------- 0 6 ""I'' ..I' "' """.,N..',.' N ",~ .', v "- 7. 0 vi= ,._ " ,._ ~ "...'M "..........~ ""''' ''O_M ,,., 0!"0j o -- :t:t !"")P"l ""''l P"ll""l ~. ""' .;.;.; " g "~ ~- FEET 200 ""''''' E SOUTII EAST ,~ ., ~ ,._ M " - ",~ ., 0 ;'-I' ",'_-.,,'' 100 SEA LEVEL -100 -200 \ / ~ "-.~ -300 / B -500 -600 1 ~r--------- -------- IJ-MARkER u ?...__ C ii1ARkE:R 1----- MIOCENE ~---------- ~ 0 ii-IAflkE:R -------- 111IocENE \)~\"t / \)~\.~ VppEJ?. ~~ ~ ocENE ?/EN~E; c ? ? .. ......- 1 v ~, ~vs.t\lf,\t /! _r vv ~ - OLIGOCENE ?- ,_, ".~ c 1\fAR.f\1~ vP \fAil KE/l 1- ? ?- ? VNIT ?- -400 500 600 -700 -700 B ""0"'''- 5 FEET 200 WEST ""I'''' I :: ~ 100 SEA LEVEL -,:"".;,'' N ~ 0 ,., .:".;,' 8:; "~ ' :..""..;',.' "":"....;''',, _, ":.",..;',,' ~~"' ,,'~~ "..,, :",0_.;_':, ~ - "'"- 2: .0.. u ""I'' ' ' ' 0 ,:"_.;,,' ":"",_;.':',', ;:: .:".:,'l ,., :";' ",.,' '-1 <; z 0 5 w "' I B I EAS T 0 :.0~ ".;,:' FEET 200 100 SEA LEVEL EXPLI\NI\TION NESTED-WELL SITE c WEST FEET :e 100 -""~ ' ' SEA LEVEL -800 LOCATION OF SECTIONS 7"".'' 0 i= u . ""."..' 8 "..', ,,"""~ ..',, "" ' ' ' ' ' ~ "'."M.,' t.. "'0" 6 ""I ' ' ',"., .""~ .'', ' ' ' ".,"..,, ~ ~ :::r:: , .!"'l , / ;!..,"T ~~~ .M:.;;."::'.'t,:":',It' . ,._ ,;;.i.l';.; '1 " L 0 5 ""I ' ' I I --'..",.. \.C., :1:101'\;1Q" :r: ,.,...:-r::. ::t: :::r:: ;J; ~ ;l;;Ji I ." , "",., C' EAST FEET 100 " "' 0"" ',"., " M .~ "".,' :;: 0 .~ .. SEA LEVEL D WEST FEET 100 SEA LEVEL UNJ'f TD 888 n TD !128 ft T D 2,7 11 ft Tl) 1, 132 11 J .soo '-> <.\ 7.: ""z -- 0 0 B "~ ' 5 ""I ' ' I D' FEET 100 ~ ~ 0 "'N M ,._ ~ ".".'.' ~ ., ,._ ~.~.-. g "'~. ~- EAST 0 0 ",~ .', SEA LEVEL - 100 p ~ST MTO CENE UN T At\TD MI PCEr>; E UNIT A UNDI FFERE ~TIATED - 100 200 ~ A MARKER -300 -400 ~ -500 r----. MIO< ENE UNIT B ? ~~/ ll MARKER - 1\UO< ENE UNIT ~ ----....__ / ? ? ? 1 /...._...._ ~ C MARKER D MARKEll -- -- o !GOC ENE / UNIT UPPER EOCENE UNIT -600 -700 TD 920 fl TD 11m fl 1 Ll 796 n TO 74.t ft TD 181 fi 1 D 809 I) TO 1,34-1 fl Tl) 737 n TD 7JH n TO 757ft -200 ~ -300 ~ -400 -500 -600 -700 1 DO p POST-MIOCENE UNIT AND MIOCE ~E Ul\ ~T A ( Nn FFI~I ~~ ~y lATE -100 - 100 -200 ----~ / 1''-. -300 MIOCENE v '-------------- ,_../ VN1r ----------- B ~ v 1\ ~~ I 400 '~ ~ M-IOCENE / I/ ~ I '-. r--- ~ / -sao ~~ 600 (JI\rf')' cAt ~ ~ ~~ '/!: ~ / 1 't ~ c (/; / ~..___________ ~ ? ;.y e---- ~; ['. :; ~v I'\ / v / VppEJ?. -700 ~700 -700 EocENE -800 -1300 TD I.OJS h ONI'f 900 900 POST-MI CENE UNIT AND MIOCENE UNIT A U - 100 DIFF RE TIATED 0 5 10 15 20 MILES 10 15 20 KILOMETERS VERTTCALSCALEGREATLY EXAGGERATED -700 GEOLOGIC SECTIONS A-A', B-B', C-C', D-D', AND E-E', COASTAL GEORGIA GEORGIA DEPARTMENT OF NATURAL RESOU RCES ENVIRONMENTAL PROTECTION DIVISION GEORGIA GEOLOGIC SURVEY Q Q z 0 6 ""I'' FEET F I I 100 SOUTH I SEALEVEL .... "' ....,, .....,. .., C - o>Nn e> O w N ."..,'. ".'".', "' .... "' .N~., .",;' g ~ 'u-! z g 0 "I ' "I ' I .'.-.,.' -"C>' .....,. .'.-.,.' P'-I' ...,. ...,. I I ....,, :2 "~' "1:"'- II ::r: I I=! I I ::J .., .., ..,./ Prepared in cooperation with the DEPARTMENT OF THE INTERIOR U.S. GEOLOGICA L SURVEY C> ~ ""' .C~ ...>., "' -:; .~ ., ..J ""' C> ..J ;;r, ~ ;, ,; z 0 B ""I'' I I I .. "' ;;r, :..;.; "' .:.;.;, ;;; ;3; z,..., ."z., ..z., f. 1- ."., ;;; "' ....n.,. C> "0n'. BU LLETIN 113 PLATES SECTION AA' I 0 I F' NORTH FEET HUTCHI NSON IS. 100 NESTE D-W ELL SITE 0 ."0.',. 8"' ."0.',. .~ ., ""0.~ .'', SEA LEVEL 100 POST- MIO CENE UNIT AND MIOCE NE UNIT 200 300 400 500 600 --------- ~ ~ " ? ~ ~ ~ ? ? ;" / A~~ --------- ~ ---------~~~ ~ Ul\TJ'f' ,r.\0(,/~ B ......_____ ~ / . -~/ '\3 ~KE.R /\ ~~~~ ~~0 # ~ ? CMARKER # ? DM,(RKER: ~/ ~ ' / UPPER EOCENE uNJ'J' ~ c ~ ~ OLIGOCENE 7 UNIT UNIT ~ ~ --- --- ~ '- ~ ~ ~ '--.._ ----\ "'-. '--.._ '--.._ A NW!l{J',R ~~R ~ c~~ "-..... 700 / ~ ~ \)~ / 1\'ilOCENE UNIT / ------- ----- NllocEN~ ~ ~ ~ ~ UNIT UNIT / vrrE~ EocENE vNl't 800 TD 967 n A v -------B v c r:::: UNDIF FEREr1TTIATE D A~Rl{ER S MAilKER c NlA-ll~-\(l'.R \) MAR~KER -------------- ? ? ' 100 200 300 400 500 600 700 TD 1,574 n 800 9 00 c, Q z 0 6 FEET 100 G ""I'' SOUTH g ..Q..., .., SEA LEVE L 100 200 300 400 -------~ 500 ? "" .>.._, .._.._ MIOCENE ? MIOCENE :~ ~ "'-. I ? .!GUCENE ? UPPER 600 EOCENE TD I ,798 ft 700 TD 740 R 800 900 ..., ..,.., .., ,., .., "wz' 0 B ""I'' u 0 z ;0::: u w "I ' I I I I I I .., .., .., .., ~ !"') rr~f'1..., !"') ,., .., .., .., "'"z' ;0::: u ""I'' I I I .. "' ..n, .o.n, .., .., .., "' "' ('<"; 1""1 r"'l 1- .".', .., .., ..., ~ .., 1 < z e [:! 0 z ::... j"' "-' .~.J ,. ~ <~ . <~ ~ WQ _ ,Q;- B ""I'' I G' o~o"z' NORTH .., ,., .0.0, PO ST- MIOCENE UNIT v "' ./ -- / UNIT B "" \ v --- - " / ./ ~ -llNJT "' --- ?,~I ~ r---... --- -...... c -/ I / [/:::~ ?.._.._ :;:::-- ~ ., / ~? r----. .. UNIT ~! ~ o( 1'--- / / / "/ / \ ....._ I I .._.._ ............... ~ --.... TD 779 n A MARKER MIOCENE BMARKER ~- B c {)~t't MIOCENE '1 cMA.RKER v~\)~,'t ~ .....--- oLIGOCENE ~ vMARKER TD 1,044 rt TD979fl TD 1,067 fl AND MIOCENE / _? / / " ---------- _ ? / / / '1 ---------- UNIT A . _? ? ~ ~ ----- ? --~ ~ ? - - - v-vrvE~ UN DIFFERENTIATED -------------.....-: ~ ~ MIOCENE ~ ? MIOCENE UNIT ? oUGOC~NE ..--------? ~ ? EOCENE -uNIT TO 1,090 R I ~ I I I I b I 5 1~ 110 It I~ 2~ KI LOMETERS VERTI CAL SCALE GREATLY EXAGGERATED 20 MILES 1 FEET 100 SEA LEVEL 100 200 300 400 500 600 700 800 / - - ", / . \. I/ \ SC R E V E N\ ~-\....._, . ! ._.__ ............, _)../ ' .., /'(' ....... \-.., ' . -<.-... . ( ) BU . 1-~.\ LL OC H <. "--. ..-...\. 1-0-">' \ - \ . '$- .-(' / , . -- \ / (c. \ (t -{ )-., 1-J.. \C HAy - .1.....:_ ) / . "/ .'1_ A ( ,' s-/ ( . ......, ' "'--. + ......., . . . / /_ LI B ERTY ,. >0-... f ~. "" . '-., 5 LO N G-..... '-i "\... J . \."\. I. W ,\ Y N E . , f \ .I -~-, '". v I l.) .'\/~c t To sf I \t---~-.;-' I r~.J "_R _) " N T LE v GL Y . ExPLANATION ~ )........._ " r--..., . \ ("j -{.\. .,; v [ _____ _._. ( C A ~ID EN ~)! i ~ C If 1911 0 I IIII III IIllIljI 0 10 10 I I 20 20 I I 30 KILOMETERS 30 MILES I THICKNESS OF MIOCENE UNIT C IN THE COASTAL AREA, GEORGIA Outcrop area from Geologic Map of Georgia, 1976 GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION GEORGIA GEOLOGIC SURVEY Prepared in cooperation with the DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY BULLETIN 113 PLATE 11 / / / ( I I I I lewts I I s c REV E Sylvania Woodcliff Altman EXPLANATION D OUTCROP AREA OF MIOCENE ROCKS, UNDIFFERENTIATED -60-- LINE OF EQUAL TIIICKNESS OF MIOCENE UNIT B--Dashed where approximately located. Interval 20 feet, 10 feet on inset Georgia Southern 32 ~ '~.,l 'L'--" ~\ I ( j \ 6 J t} Donald " ' Gum H>villd ' \_ N r--------' 1 I I I I I '- - -C - -H- -A-R - -L7T 0 I I I I J I ( ';:Moniac ) I I ( \ I I St George.n.....t-1 sourHCRN I J Base from U.S. Geological Survey State base map, 1970 a () >-...t ,.. Sound f..; :?; ;o.._'>~ ~ !-..{ f..; "~' ""'' ~ ISLAND .....,_u.s.~~at'-"ty wk. - _. - hltr E&M. . l-.... ..... 1:2 4.-. Wnon.ot, Do.. _,., ll-ft(IM7 ob:::::E=E3==<==>==D~'=='=='=='=='=='==~2 MILES OEcEDEOED=r:i'=='=='=='==,32 KILOMETERS 0 10 20 30MILES Outcrop area from Geologic Map of Georgia, 1976 ~-- - - -- -- ~ ... . ... ............................................ ...............~ ENVIRONMENTAL PROTECTION DIVISION GEORGIA GEOLOGIC SURVEY !'repared m cooperation with the DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY BULLETIN 113 PLATE 12 ;' / ;' ( I I I I Lews I I S C R EVE Sylvania .:J Woodcliff I ;-------- I L Portal 't( ( I \ ) 0 Guyton o Pineora 0 Marlow EXPLANATION D OUTCROP AREA OF MIOCENE ROCKS, UNDIFFERENTIATED -180-- LINE OF EQUAL THICKNESS OF POST-MIOCENE UNIT AND MIOCENE UNIT A--Dashed where approximately located. Inte~al 20 feet, 10 feet on inset NT ' w r-- \l 31 -F -----""-"' () !-...; f...r 31 I I I I I I '- - -c- - H - - A - -R- -L7 T ~ ~ "-..) f...r ~ I I _J I I "0: \ ~ I I I 1- ' I \ J \ I I ( I St Georgeo...ri t-... '=(Momac SOVTHRN I ) J I I I f ( ~ I \ ,\ \ __ ~_.,.) - f . - lL5. CO.o...k&l S....r ~bot. .......u ........ - ..... - ........ W.M. 1<14,oot. lf1t ltoMou .. IHl Base from U.S. Geological Survey State base map, 1970 I"0 I r I I I III IIlIj 0 10 10 I I 20 20 I I 30 KILOMETERS 30 MILES I Outcrop area from Geologic Map of Georgia, 1976 THICKNESS OF MIOCENE UNIT A AND POST-MIOCENE UNIT IN THE COASTAL AREA, GEORGIA GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION i GEORGIA GEOLOGIC SURVEY Prepared in cooperation with the DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY BULLETIN 113 TABLE4 Table 4.--Chemical analyses of ground water from selected wells in the coastal area [<0.1, less than 0.1. Aquifer: S, surficial; UB, upper Brunswick; LB, lower Brunswick; UF, Upper Floridan; LF, Lower Floridan; Dissolved constituents: Si02, silica; Ca, calcium; Mg, magnesium; Na, sodium; K, potassium; HC03, bicarbonate; CaC03, calcium carbonate; S04, sulfate; Cl, chloride; F, fluoride; N03, nitrate; Cd, cadmium; Cr, chromium; Cu, coppe~; Fe, iron; Pb, lead; Mn, manganese; Hg, mercury; Se, selenium; Sr, strontium; Zn, zinc. T, thief sample collected dur1ng drilling. Specific conductance: In microsiemens per centimeter at 25C. Temperature: temperature of water, in degrees Celsius. --, no sample analyzed. Analyses by U.S. Geological Survey] Sampled Well interval Date no. (ft) Aquifer sampled Si02 - .. Brantlel Countl 31H005 612-745 UF 08-17-85 39 Brlan Countl 35P099 360-620 UF 08-07-85 43 Bulloch Countl 31U009 160-210 UB 32R003 134-155 s 08-06-86 49 08-09-86 25 Camden Countl 32E030 70-75 s 04-16-65 32F041 18-28 s 04-16-65 33E002 33E039 33E040 33E041 ' 80-474 S,UB 950-1,150 UF 560-750 UF 15-18 s 4221//001o2212----11103372----88786674 34.7 36.1 33E042 12-15 s 4102-17-77 33E043 16-19 s 4/02-17-77 33E044 17-19 s 33E045 15-18 s 44//0022--1177--7777 Charlton Countl 27E003 470-660 UF 30E002 260-300 UB 08-14-85 36 11-21-84 Chatham Countx 36P090 37P087 37P113 37P113 37P119 37P120 37P121 37P122 37P123 37P124 37Pl25 37P126 37Pl27 37P128 37P129 37P130 37Pl31 37Pl32 37P133 37Pl34 37P135 37P136 37P137 37P138 37Pl39 39Q001 323-639 UF 286-600 UF 715T LF 1,070T LF 41-46 12-16 s s 20-23,51-53, s 55-58 50-55,70-75 s 57-62,67-72 s 55-65 s 55-62 s 32-37,49-54 s 15-20 s 28-31,44-49 s 55-65 s 15-20 s 50-54 s 38-48 s 60-65 s 45-52 s 33-38,54-57 s 65-75 s 56-66 s 27-34 s 41-51 s 197-575 UF 08-07-85 43 08-06-85 37 10-03-83 20 5/o180--1053--8863 39 5/QB-15-86 5/o8-19-86 5/o8-20-86 5/08-14-86 5/oB-20-86 5/08-14-86 5/08-20-86 5/o9-o4-B6 5/08-15-86 5/08-20-86 5/o9-04-86 5/o8-19-86 5/o8-22-86 5/oB-15-86 5/o8-19-86 5/o8-20-86 5/o8-19-86 5/o8-20-86 5/o8-20-86 5/o8-20-B6 08-06-85 38 Ca 41 32 18 4.7 50 96 75.7 74.9 68.4 22 22 12 200 25 Milligrams per liter Alkalinity Mg Na K HC03 as CaC03 504 Cl F N03 Cd 22 22 1.8 153 125.46 71 23 0.6 <0.01 5 12 1.6 135.6 111.2 5.7 4.8 .3 .01 5 5.4 1.3 86.3 70.8 0.5 5.1 2.4 28.4 23.29 6.7 3.1 .4 <.02 2.7 2.9 .2 <.02 4.1 9.1 1.1 165 8 15 .3 6.4 19 0.6 276 31 39 .2 33.5 35.4 3/;c; 3/25 3i; 3/3 38 160 163 38 .56 166 159 45 .51 71 10.3 <.01 0.94 12 42.8 <.01 .21 166 40.0 .54 .94 23 28.5 <.01 .67 <5 24 <.01 .48 34.4 59.2 3.6 322.7 264.61 61.6 72.1 1 <.01 32 8.8 13 11 17 14 150 220 18 48 2.3 127.9 104.88 4.7 4.4 .5 .01 2.3 143.1 117.34 14. 8.1 .5 <.01 9.2 77 180 1.1 78 1,600 5,000 2.8 1.3 41 44 28 <1 28 <1 28 <1 34 21 180 <1 120 <1 52 <1 34 <1 27 <1 25 3.8 145.2 119.1 67 43 .7 <.01 Cr 152 11.7 12.2 46.1 4.4 ' Micrograms per liter Cu Fe Pb Mn Hg 130 <1 130 6 450 100 910 12 10.5 4,980 15.4 5.4 5.1 2,760 8.0 4.1 6.3 1,270 15.4 5.0 5.9 2,790 15.4 3.8 5.9 1,650 32.6 4.8 59 2 10 <1 10 <1 611,500 6/2so 6/200 61200 6/2so 6/200 6/1sa 6/210 6/5oo 6/5J100 6 790 6/5oo 5 <1 Dissolved solids (mg/L) ' I Hardness as CaC03 (mg/L) ~ Specific Residue Sum of Ca+ Non- con- Se Sr Zn at 180C constituents Mg carbonate ductance pH Temperature ... -_,: ... -"--" 420 320 1/456 7.8 25.2 310 175 l/ 245 8.0 23.8 98 131 36 42 l/ 147 7.4 20.8 64 6.1 19.1 466 463 252 71 186 125 278 474 250 144 262 85 - - - - - - - - ---~--~--- 620 535 179 346 573.6 581.4 142 266 320 160 316 150 43 33 304 49 16 l/ 308 7.6 l/570 7.5 1/675 7.9 1/670 7.0 17.6 650 6.8 19.8 132 4.8 182 4.8 740 6.6 262 5.0 151 4.0 786 1/.3 21.7 594 8.2 360 480 1,700 19,000 154 181 521 10,600 ,-- 1,100 325 231 8.1 23.7 268 981 16,600 1/8.0 1/88..10 23.3 27.5 31.5 170 7.6 25 190 6.4 26 100 6.7 26 210 7.9 25 140 7.4 26 230 7.6 24 145 7.1 26 235 7.9 25 145 6.1 23 340 7.4 25 135 7.1 25 135 5.3 22 420 7.5 25 245 7.4 24 195 7.7 25 245 7.4 26 295 7.3 26 100 7.1 26 155 7.7 25 195 7.6 25 245 7.7 26 503 8.0 23.2 Editor: Patricia Allgood Reprinted 1999 $989/250 The Department of. Natural Resources is an equal opportunity employer and offers all persons the opportunity to compete and participate in each area of DNA employment regardless of race, color, religion, sex, national origin, age, handicap, or other non-merit factors.