Investigation of the rheology, cure kinetics, and thermo-mechanical properties of GRC-A loaded with zeolites, 2010

Collection:
Atlanta University and Clark Atlanta University Theses and Dissertations
Title:
Investigation of the rheology, cure kinetics, and thermo-mechanical properties of GRC-A loaded with zeolites, 2010
Creator:
Brown, Tracy
Contributor to Resource:
Mintz, Eric
Ingram, Conrad
Parker, Cass
Date of Original:
2010-08-01
Subject:
Degrees, Academic
Dissertations, Academic
Location:
United States, Georgia, Fulton County, Atlanta, 33.749, -84.38798
Medium:
dissertations
theses
Type:
Text
Format:
application/pdf
Description:
Degree Type: dissertation
Degree Name: Doctor of Philosophy (PhD)
Date of Degree: 2010
Granting Institution: Clark Atlanta University
Department/ School: School of Arts and Sciences, Chemistry
Phenylethynyl terminated imides (PETI) are high temperature, high performance matrix resins that can be processed into composites by various methods including resin transfer molding (RTM) arid vacuum assisted resin transfer molding (VARTM). PETI resins have experienced extremely rapid development in recent years, with major emphasis placed on engineering applications that take advantage of their high cured TgS,high thermooxidative stability, high strength to weight ratio, outstanding mechanical properties, and compatibility with RTM and VARTM processing. In recent years the addition of nanoparticles to resin systems has been shown to further enhance the mechanical properties and thermooxidative stability. In this study, we incorporated nanoporous aluminosilicate materials, otherwise known as zeolites, into PETI resin GRC-A, and investigated the effect the zeolites have on the viscosity, cure kinetics, thermooxidative stability and other thermomechanical properties of GRC-A. Rheological and differential scanning calorimetry studies conducted on the GRC-Alzeolite mixtures showed that zeolite L acts like a filler and retards the curing of the phenylethynyl end-groups, while zeolite Y catalyzes the curing process. Additionally, cure kinetic studies via melt rheology and DSC confirmed that the activation energies for GRC-A/zeolite Y mixtures as lower than for neat GRC-A and GRC-A/zeolite L mixtures, further supporting zeolite L acts as a filler while zeolite Y serves as a catalyst during the cure process. While the cured Tgs, from the DMA and TMA studies showed that in spite of the catalytic properties of zeolite Y; it did not afford additional properties over GRC-A and zeolite L mixtures. However, the catalytic properties of zeolite Y allows PETI resins to be cured at a lower temperatures, which could lead to lower energy costs in the production of composite parts from PETI resins.
Metadata URL:
http://hdl.handle.net/20.500.12322/cau.td:2010_brown_tracy
Language:
eng
Holding Institution:
Clark Atlanta University
Rights:
Rights Statement information

Locations